0OS-9 for 68K
Processors BLS
Reference

Version 3.1

M MICROWARE"

Intelligent Products For A Smarter World

/5//& MICROWARE"

Copyright and Publication Information

Copyright ©2000 Microware Systems Corporation. All Rights Reserved. Reproduction of
this document, in part or whole, by any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without written permission from Microware
Systems Corporation.

This manual reflects version 1.0 of Enhanced OS-9 for 68K Processors. The Operating
system version is 3.1

Revision: B
Publication date: July 2000
Disclaimer

The information contained herein is believed to be accurate as of the date of publication.
However, Microware will not be liable for any damages including indirect or consequential,
from use of the OS-9 operating system, Microware-provided software, or reliance on the
accuracy of this documentation. The information contained herein is subject to change
without notice.

Reproduction Notice

The software described in this document is intended to be used on a single computer
system. Microware expressly prohibits any reproduction of the software on tape, disk, or
any other medium except for backup purposes. Distribution of this software, in part or
whole, to any other party or on any other system may constitute copyright infringements
and misappropriation of trade secrets and confidential processes which are the property of
Microware and/or other parties. Unauthorized distribution of software may cause damages
far in excess of the value of the copies involved.

For additional copies of this software/documentation, or if you have questions concerning
the above notice, please contact your OS-9 supplier.

Trademarks

0S-9, 0S-9000, DAVID, and MAUI are registered trademarks of Microware Systems
Corporation. SoftStax, FasTrak, UpLink, and Hawk are trademarks of Microware Systems
Corporation. All other product names referenced herein are either trademarks or
registered trademarks of their respective owners.

Address

Microware Systems Corporation
1500 N.W. 118th Street

Des Moines, lowa 50325
515-223-8000

Table of Contents

Chapter 1: Introduction 7

8 0OS-9 for 68K Targets Supported

8 Software Packages

9 BLS Installation Kit Contents

10 MWOS Development Directory Structure
10 MWOS Subdirectories

16 General Installation Procedure

Chapter 2: Hardware Configuration and the Initial Boot 19

20 Target CPU Board Configuration
23 Sample Reconfiguration Session for MVME boards

24 Hardware Reconfiguration

25 Board Memory Size

25 Board ID

26 Group ID

26 VME Interrupt Levels

26 VME Slave Memory

26 VME Slave Memory Address

27 SCSI Reset on ROMBUG startup
28 Boot System Reconfiguration

29 Initial OS-9 Test Boot

ﬁf\ MICROWARE"

Chapter 3: Optional Hard Disk and Initial Networking Startup 33

34 Connecting A SCSI Hard Disk

34 Manual Installation Information

34 Formatting 4 Gigabyte or Smaller Drives

36 Formatting and Partitioning Drives Larger than 4 Gigabytes

41 Network Configuration

44 Establishing the Hard Disk Root Directory

44 Prepare Image on Host machine

45 Transfer Image to Target Machine
Chapter 4. Boot and ROM Customizing 49

50 Overview

51 PORTS Directory Organization

53 BLS Makefiles

56 Modifying Bootlists

59 Init Module

60 Customization Modules

61 Clock Modules

61 SCF and Pipeman

63 RBF

65 SBF

66 Initial System Process

67 Additional Modules and Utilities

68 Networking Modules

70 Networking Configuration Modules

71 Networking Utilities

73 NFS

74 Making Boots

74 I/O based Booters

75 Hard Disk Boot

75 Hard Disk Boot Method 1

76 Hard Disk Boot Method 2

77 Floppy Boot

80 Manual Bootfile Installation Method 1
80 Manual Bootfile Installation Method 2
81 Manual Bootfile Installation Method 3
82 Tape Booting

82 Tape startup Sequence

82 Supplied Utilities

88 BootP Booting

88 Creating the Boot

89 Booting the boot

90 Customizing ROM images

90 Modifying the ROM Bootfile

92 initext File

94 Download Booting
98 ROM Customization (OEM Package)

Chapter 5: Configuring Your System for Networking 99
Chapter 6: Developing Your System in Hawk 101
Appendix A: SCSI Information 103

104 Overview
105 SCSI Software Configurations — Implementation Notes
105 SCSI IDs

106 Device Drivers: rbsccs/rbvces

108 Differences Between rbsccs and rbvccs Device Descriptors
108 Other Important Device Descriptor Fields

110 Converting a rbsccs Drive for Use with rbvccs

111 Embedded SCSI Hard Disk Support
112 Embedded SCSI Floppy Disk Support
113 Embedded SCSI Tape Support

113 Module Locations

ﬁf\ MICROWARE"

Index 115

Product Discrepancy Report 125

Chapter 1: Introduction

This manual describes installing Enhanced OS-9 for 68K on your target
system. This Board-Level Solution (BLS) provides a means for
end-users and Original Equipment Manufacturers (OEMS) to quickly
build standard VME-based systems with minimal effort.

This chapter includes the following sections:
 0OS-9for 68K Targets Supported

* BLS Installation Kit Contents

« MWOS Development Directory Structure
» General Installation Procedure

M MICROWARE"

/\://& MICROWARE"
OS-9 for 68K Targets Supported

Board Level Solutions (BLS) supported targets include:

* 68328:

MC328ADS
« CPU32:

MC68360 Quads (Quads) (OEM Package ONLY)
* 68040:

MVME162 (all models)
MVME167 (all models)

* 68060:
MVME172 (all models)
MVME177 (all models)

Software Packages

The CD contains Board Level Solution products for the boards listed
above. When ordering a BLS product for a specific board you will also
receive the ROMs for that particular board. For example, the EPROMs
for MVME162 FX and MVME162 LX boards are included when a 162
BLS is ordered. BLS packages are mostly binary based with the
sources required to configure the system through device descriptors,
the init module, and by adjusting the modules included in the boot.

Embedded OS-9 for 68K is the OEM Source package. This package
contains all the BLS versions along with the sources to rebuild drivers,
selected system modules, port specific ROM code and a variety of
example drivers to aid in porting OS-9 for 68K to a new hardware
platform. The OEM Source package does not include EPROMSs for any
of the boards.

Both packages allow customizing the Embedded bootfile with support
for serial and parallel devices, RAM disks, SCSI disk and tape drives,
SPF based TCP/IP networking support, NFS and a variety of system
utilities.

BLS Installation Kit Contents

The BLS installation kit consists of the following:

Table 1-1 BLS Installation Kit Contents

Quantity Description

1 RomBug/Boot PROM(s) for specified board
(Not included in OEM Source package)

1 Windows Hosted Installation CD

1 Getting Started manual

1 Support Registration card

/\://& MICROWARE"
MWOS Development Directory Structure

The Microware OS-9 products are developed in a directory structure
that allows for multiple processors and supported boards to share
common sources and definitions where possible. The directory tree is
referred to as the MWOS (Microware OS) directory structure.

The MWOS directory structure is installed on the host system. This
package supports Windows 95, Windows 98, or Windows NT host
development systems. The MWOS structure can also be installed on
the OS-9 target system. Generally, however, a simpler directory
structure is used on the target system—especially when no
development work is to be performed there.

For More Information
The target disk structure is discussed in Chapter 3.

Customizing a BLS for a target platform that requires assembly,
compilation, or other build process, is performed within a PORTS
directory in the MWOS development directory structure.

MWOS Subdirectories

MWOS

DOS | 0s9 0OS9000 | SRC UNIX

Table 1-2 MWOS Subdirectories

Directory

Contains

0s9

GS9000

SRC

MAKETEMPL

0S-9 for 68K object code is targeted under this
directory. The 68K version of OS-9 has a kernel and
primary system modules written in assembly code.
All OS-9 specific source code, def s files, libraries,
processor family code, and ports reside here. Most
customizing of your system environment for the
BLS is performed under this directory structure.

OS-9 directories for processors other than the 68k
family of processors. This is the C based version of
0S-9.

All sources that are common at this level of the tree.
C defs, common I/O systems, user tools, and Dual
Ported I/O (DPIO) are examples of code found
under the MNDS/ SRC directory.

Similar to other OS directories. Contains
development tools for use on a Windows
cross-development host.

A directory for common makefile templates (include
files for makefiles). Files in this directory also
control which processors the template based
makefiles target.

/5//& MICROWARE"

Figure 1-1 OS9 Subdirectories
) S
MAOS

—~L

OS9

(o) (o] (o] (2] (o) ey [

Table 1-3 OS9 Subdirectories

Directory Contains

68000 The object code and libraries specific to the 68000
family of processors or binaries created to run on all
versions of the Motorola MC68xxx family of
processors. Most OS-9 for 68K utilities are compiled
to run on all processors. In some cases (such as the
networking utilities), speed concerns require
compiling versions specifically for the 68020 and/or
CPU32 families.

The 68000 directory also contains code for the
68010, 68070, and 68302 processors.

CPU32 Files specific to the CPU32 family, such as the
68332, 68340, 68349 and 68360 processors.

68020 The cnds, libraries and ports specific to the
68020/68030 processors.

68040 The cnds, libraries, and ports specific to the 68040
processors (MVME162 and MVME167 board ports).

Table 1-3 OS9 Subdirectories (continued)

Directory Contains

68060 The cnds, libraries, and ports specific to the 68060
processors (MVME172 and MVME177 board ports).

SRC The source files for the OS-9 for 68K drivers,

descriptors, system modules, defs, and macros. SRC
is intended to be a source directory containing
hardware-specific code written to be reusable from
target to target. It is not intended to be the repository
for final object modules that are built from this
source, although intermediate object files may be
found within its subdirectories.

Each CPU directory has a PORTS subdirectory. The PORTS subdirectory
provides directories for a variety of target system boards.

Figure 1-2 PORTS Subdirectories

F@t
=

‘ QP2 Card Disk Controller Ethernet Card SCSl Gard Serial Card
Card

Generally, if you are going to use peripheral cards with a variety of CPU
cards, you should locate them under the 68000 directories. Drivers and
card ports specific to 68020 or CPU32 family processors are located
under their respective <CPU>/ PORTS directory. The 68040/ PORTS
directory contains the MVME162 and MVME167 board ports
directories. The 68060/ PORTS directory contains the MVME172 and
MVME177 board ports directories.

/5//& MICROWARE"

i Note

In previous releases of OS-9 packages, some or all of the board ports
directories were in the 68020/ PORTS directory.

Each card subdirectory has a structure that includes C\VDS and

CVDS/ BOOTOBJ S directories. CPU card directories may also contain a
BOOTLI STS subdirectory for use in creating boots from within the MAOS
directory structure.

Figure 1-3 SRC Subdirectories

O N—
0s9

SRC

DEFS | 10 MACROS ROM SYS SYSMODS|

Table 1-4 SRC Subdirectories

Directory Contains

DEFS Files of definitions that apply system-wide or are
processor independent. These include both assembler
.d and C. h incl ude files.

I O Sources for all OS-9 for 68K-specific I/0 subsystems
including file managers, drivers, and descriptors. The
file’s subdirectories are organized by subsystem.

Table 1-4 SRC Subdirectories (continued)

Directory Contains

MACROS Files of assembly language macro definitions that apply
system-wide or are target independent.

ROM Sources for rebuilding boot ROM components, except
for a few that share source with SCSI drivers in 10
(OEM package only).

SYS A repository for files and scripts that would end up
residing in the OS-9 SYS directory on the root of the
system disk.

SYSMODS Sources for system extension modules.

Note
The level of source code available under the SRC directory depends on
the type of package you purchased.

/5?\ MICROWARE"

General Installation Procedure

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.
Step 7.

Following is a list of basic steps to complete to install Enhanced OS-9
for 68K on your target system. These steps are described in detail in the
following chapters.

Install the Enhanced OS-9 Board Level Solution from your product CD
onto your Windows-based host development system.

Choose one of the two methods for installing the ROM code onto the
CPU board.

Start the target board for the first time using the OS-9 Boot that is
included in the ROM Image.

For More Information
See Chapter 2 for more information about steps 2 and 3.

Partition and format any SCSI hard drives attached to the target system
(optional).

Start OS-9 networking for the first time using st art spf . ndbnod
(quick startup method).

Load the hard disk with cmds and startup scripts (optional).

Customize and install the bootfile and utility set for the target
environment.

For More Information

For all packages, see Chapter 4. For systems with SCSI devices, see
Chapter 3.

Configure the appropriate networking drivers and NFS client systems.

For More Information
See Chapter 5 for information about network configuration.

Set up the Hawk Development environment.

Note

The Enhanced OS-9 for 68 Processors MVME Board Guide provides
specific information for CPU boards as well as information on
configuring a number of peripheral boards supported by Microware.

1 Introduction Aﬂ MICROWARE"

18 0S-9 for 68K Processors BLS Reference

Chapter 2: Hardware Configuration
and the Initial Boot

This chapter includes the following topics:

» Target CPU Board Configuration
Sample Reconfiguration Session for MVME boards
Initial OS-9 Test Boot

Aﬂ MICROWARE"

/5//& MICROWARE"

Target CPU Board Configuration

Step 1.

Step 2.

Before configuring your target board, be sure to read the following
reference materials:

» Follow the instructions for hardware preparation and installation
described in the manuals supplied with your CPU board or system.

* Read the Motorola debugger manuals included with the PROM/flash
code provided with your CPU board.

* Refer to the <CPU>Bug manual for your CPU board for details on
running the initial board diagnostics.

Complete the following steps to configure your target system:

Remove the CPU board from the system. Take precautions to protect
the board from static damage.

For More Information

Refer to Enhanced OS-9 for 68K MVME Board Guide for the
information specific to your CPU board. The section for each CPU
board contains jumper block diagrams/usage, ROM socket locations,
ROM start-up sequences, and any other information specific to the
board.

Choose a method and install the OS-9/RomBug ROM code on your
target CPU board.

Generally, the OS-9/RomBug PROMs may coexist with the Motorola
Bug PROM code pre-installed on the CPU boards or the OS-9 PROM
code may be installed as the only debugger in the system. On some
CPU boards, flash memory may replace some or all of the ROM

memory space. For boards with additional ROM or Flash space, the
0OS-9 init module can be customized to search the additional areas for
0S-9 modules during system boot.

* Method 1: If you are using one of the MVME boards that has FLASH
memory available and you have a MOTBUG rom installed in the
board, this method involves using MOTBUG to program the flash
memory with the OS-9 ROM image provided.

This is the simplest method for changing the embedded boot image
on the target board. Use MOTBUG to perform the ENV, NIOT, NIOP,
and PFLASH command to setup, download, and program the
FLASH memory with the ROMBUG, Booters, and embedded OS-9
Boot ROM image. Once the FLASH memory is programmed, you
can choose, via a jumper setting, whether to have MOTBUG start
the system and then call the OS-9 ROM or to have the OS-9 ROM
be the primary startup code. Choosing the OS-9 ROM as the
primary startup code significantly decreases startup times.

* Method 2: Boards with no Flash memory or without MOTBUG or
other monitor PROMS require that you install the OS-9 EPROMS
provided with your BLS onto the board. This is also a faster method
of installing the OS-9 ROM code on your board. If you choose this
method be sure to retain any MOTBUG PROMS so that you can use
method 1 in the future or perform Motorola diagnostics on the board
if required.

On some boards, you can choose whether to leave the MOTBUG
PROMS in the primary socket(s) and install the OS-9 PROMS in a
secondary socket(s) or to install the OS-9 PROMS in the primary
socket(s) as the sole ROM code on the board. As with Method 1,
using only the OS-9 ROM code will decrease the time required for
the startup sequence.

/5?\ MICROWARE"

For More Information

Refer to Enhanced OS-9 for 68K MVME Board Guide for information
on the specific sequences for programming flash memory or installing
the OS-9 PROMS on your board.

Generally the OS-9 for 68K system uses a console port configured at
9600 baud, 8 data bits, 1 stop bit, and no parity with XON/XOFF
handshaking. A three-wire RS232 cable with RX, TX, and signal ground
is the standard cabling required to proceed to the next section.

For More Information
Enhanced OS-9 for 68K MVME Board Guide details any exception to
this configuration and the location of the console port.

Sample Reconfiguration Session for MVME
boards

Step 1.

Step 2.

Once your system ROM startup method is configured, a reset or fresh
powerup should bring up the OS-9 ROM code. The MVME1xx board
PROMS and Flash images contain the ROMBUG debugger and a
reconfiguration menu for setting and saving a number of settings in the
NVRAM (Non-volatile RAM) provided on these boards.

The following example shows a configuration session for a MVME162
CPU board. The sequence of questions is identical for all the MVME1xx
BLS packages; however, the data displayed and available responses
may vary depending on the particular CPU board being configured.

Power up CPU Board or press <Reset >.

The following lines are displayed:
OS- 9/ 68K Syst em Boot strap

<Cal | ed>
Searching special nmermory list for synmbol nodul es..

dn: 000000FF 00002000 00000000 00020000 00000000 00000001 FFFFEOOO OOO069F8
an: FF800AG6E FF800500 FFA40000 FFA20000 00007A00 00000400 00000400 000069F8
pc: FF800970 sr:2708 (--SI-7-N---)t:OFF msp: B7B2BD3B usp: 00000000 ~iosph
OxFF800970 >43FAFBDA I ea.l OxFF80054C(pc), al

RonBug: g

Press letter g to start the boot up process.

The first time the board is powered up after the OS-9 ROM code is first
installed, the reconfiguration sequence is called. Additionally, if the
NVRAM CRC is found to be incorrect, the following sequence is
activated. The initial reconfiguration may also be activated by holding
down the <Abor t > button on the CPU card as the card comes out of
the reset process. (Hold down the <Abor t > button, press and release
the <Reset > button, then release the <Abor t > button.)

/5?\ MICROWARE"

i Note

This Abor t / Reset sequence only works when the OS-9 ROM code is
installed in the primary bank. If the Motorola debugger is installed in the
primary ROM/FLASH bank, see Enhanced OS-9 for 68K MVME
Board Guide, for information about configuring the Motorola debugger
and the description of forcing a reconfiguration session.

*xx ATTENTI ON ***
NVRAM was found corrupted - reconfiguration is forced.
Do you wish to reinitialize the new OS89 area

of NVRAM before entering new val ues:
(<yes>/<no>)? yes

Answering yes causes the NVRAM to be initialized to zero values and
all booters made available. Answering no leaves the last known values
in the NVRAM and keeps the current setting during reconfiguration.

Hardware Reconfiguration

For each question, you can select one of the following:

Table 2-1 Hardware Reconfiguration Responses

Key Result

Backspace Backspace over the value and enter a new value.
Tab Toggle between the current and default values.
Esc Exit the reconfiguration sequence.

Return Accept the value displayed.

Board Memory Size

Warni ng: you are forced to enter the default val ue.
Board Menory Size: [current=0x0] [default=0x400000]

(<new_val ue><cr >/ <t ab>/ <esc>) ? 0xO0
(<new_val ue><cr >/ <t ab>/ <esc>) ? 0x400000

Table 2-2 Board Memory Sizes

Board Memory Size

MVME162 the memory size is filled in automatically and cannot be
MVME167 changed

MVME172

MVMEL177

Board ID

Board ID: [current=0] [default=15]
(<new_val ue><cr>/ <t ab>/ <esc>)? 0
(<new_val ue><cr >/ <t ab>/ <esc>)? 15

The board ID is used in conjunction with the Microware ISP Backplane
drivers. The default ID of 15 is used if no backplane driver is to be used
or if this CPU board is the only one in the system. For systems using
SPF based networking (all new installs) select the default value.

For systems using the discontinued ISP backplane driver refer to the 3.x
manuals for appropriate reconfiguration settings.

WARNING
You are forced to enter the default value.

4;XTWCROWARE

Group ID

Group ID: [current=0x0] [default=0xd2]
(<new_val ue><cr >/ <t ab>/ <esc>) ? 0xO0
(<new_val ue><cr >/ <t ab>/ <esc>) ? 0xd2

VME Interrupt Levels

VME interrupt |evels enabled: [current=<none>]
[def aul t =1234567]

(<new i st ><cr >/ <t ab>/ <esc>) ?

(<new i st ><cr >/ <t ab>/ <esc>)? 1234567

If this CPU board is to service interrupts on the VME bus, select the
levels of interrupts the board is suppose to acknowledge. Generally, the
left-most board/system controller CPU is set to service all interrupts,
while the other CPUs are set to none. More complicated interrupt
schemes can be implemented if more than one CPU is on the same
VME backplane. Only one board should be set to service any particular
interrupt level.

VME Slave Memory

VME Sl ave Menory: [current=di sabl ed] [default=enabl ed]
(enabl ed<cr >/ di sabl ed<cr >/ <t ab>/ <esc>) ? di sabl ed
(enabl ed<cr >/ di sabl ed<cr >/ <t ab>/ <esc>) ? enabl ed

The VME slave memory is enabled to allow VME bus boards access to
the CPU cards’ on-board RAM.

VME Slave Memory Address

VME Sl ave Menory Address: [current=0x0] [default=0x0]
(<new_val ue><cr >/ <t ab>/ <esc>) ? 0x0

The VME slave address is the VME bus address at which the local
board's memory appears on the VME bus. That is, when other boards
want to access this CPU board's on-board memory, this is the starting
address of the CPU board's memory when addressed from other cards
on the VMEDbus. The board should be set so each board’s memory
appears in non-overlapping address spaces on the VME bus.

SCSI Reset on ROMBUG startup

SCSI Reset on ROVBUG startup: [current=disabl ed]
[def aul t =enabl ed]

(enabl ed<cr >/ di sabl ed<cr >/ <t ab>/ <esc>) ? di sabl ed
(enabl ed<cr >/ di sabl ed<cr >/ <t ab>/ <esc>) ? enabl ed

Generally the SCSI bus is issued a reset when the CPU card is reset.
This feature may be disabled if the reset is not desired.

/5//& MICROWARE"

Boot System Reconfiguration

The following questions are used to configure the boot-up sequence for
the CPU. Disabling the debugger causes the Boot Menu to display first.
Using the OS-9 break command causes a system reset if the debugger
is disabled.

Disabling the Boot Menu causes the system to follow the sequence
entered under the Booter Priority Order sequence in attempting to boot
the system. You may enter a given device more than once. Once the
menu is disabled, you need to use the Abort/Reset method previously
described to force the ROM code into the reconfiguration sequence.

Debugger: [current=enabl ed] [default=enabl ed]
(enabl ed<cr >/ di sabl ed<cr >/ <t ab>/ <esc>) ? enabl ed

Boot Menu: [current=enabl ed] [default=enabl ed]
(enabl ed<cr >/ di sabl ed<cr >/ <t ab>/ <esc>) ? enabl ed

Boot Drivers Avail abl e:

- Boot from SCSI (SCCS) hard drive

- Boot from Viper tape drive

- Boot from Teac SCSI fl oppy drive

Boot from BOOTP i 82596 LANC

- Boot froma non-volatile (Static) RAM di sk

- Load Bootfile from ROM

- Boot from ROM

8 - Boot Mnually Loaded Bootfile |Inage

The priority of these boot drivers can be set bel ow.
This priority determ nes the order that the boot drivers
will be selected when your systemis configured to boot
automatically. It also deternines the order that they
appear in the "boot driver menu" as well.

Booter Priority Order: [current=12345678] [default=12345678]
(<new i st ><cr >/ <t ab>/ <esc>)? 12345678

~NOoO b~ WDNBRE
1

Is this the configuration you want:

(y)es will reconfigure and restart the system
(n)o will restart this reconfiguration dial ogue.
(<yes>/<no>)? yes

Repeat the process or enter yes to restart the system with the new
values for hardware and boot system configuration.

Initial OS-9 Test Boot

Once you have configured the NVRAM data structure, you are ready to
boot OS-9 for the first time. The following example uses the
configuration as set up in the previous section on an MVME162
CPU-based system. The OS-9/RomBug PROMSs contain a ROM-based
0S-9 for 68K Boot for your CPU board with drivers for the serial
devices, a SCSI hard disk, SPF based TCP/IP networking, and the user
state HAWK target daemons. This boot also contains a small set of
utilities that simplify downloading additional modules.

The following sequence shows the OS-9 for 68K system first being
booted from ROM, then being loaded from ROM, and finally example
output from some of the utilities contained in OS-9 for 68K in ROM.

After the reconfiguration sequence, you see the following display:

OS- 9/ 68K Syst em Boot strap

<Cal | ed>
Sear chi ng special nenory list for symbol nodules...

dn: 00000OFF 00002000 00000000 00020000 00000000 00000001 FFFFEOOO 000069F8
an: FF800AGE FF800500 FFA40000 FFA20000 00007A00 00000400 00000400 000069F8
pc: FF800970 sr:2708 (--SI-7-N---)t: OFF nmsp: B7B2BD3B usp: 00000000 ANiosph
0xFF800970 >43FAFBDA | ea.| OxFF80054C(pc), al

RonmBug: g

After the RomBug initial register dunp is displayed, press § <r€f> to bring up

the boot menu. In this first exanple we will boot from ROM
BOOTI NG PROCEDURES AVAI LABLE -------- <| NPUT>
Boot from Viper tape drive ---------- <vs>
Boot from Teac SCSI floppy drive ---- <fs>
Boot from SCSI (SCCS) hard drive ----- <hs>
Boot from BOOTP backpl ane ----------- <bp>
Boot from BOOTP ani7990 LANCE -------- <l e>
Load Bootfile fromROM -------------- <lr>
Boot fromROM --------mmmmmmmma oo <r o>
Boot Manual |y Loaded Bootfile Inage - <ml >
Reconfigure the boot system--------- <rc>
Restart the system------------------ <qg>

Sel ect a boot nethod fromthe above nenu.

Step 1.

4;XTWCROWARE

Enter ro <Return> to boot the system from ROM. The ROM area is
searched and if an OS-9 kernel is found, it is executed from its position
in the ROM. Next, the kernel searches for the rest of the OS-9 system
modules and executes them from ROM and the following displays:

Now searchi ng nenory ($FF820000 - $FF827FFF) for an 0S-9
Kernel . ..

An OS-9 kernel nodule was found at $FF820000
Avalid Os-9 bootfile was found.

Sysgo can’t chx to ' CMDS

Sysgo can’t open 'SYS/startup’ file

$

0S-9 is now running as shown by the $ prompt from the shell.

The system in the ROM is set up to use the device /dd as the default
system device. In this case /dd is a standard RAM disk, which is empty
when first initialized. Therefore when sysgo looks for a CMDS directory
and the SYS/startup files, neither are found. When sysgo doesn't find
the CMDS directory or the Startup file, it prints the warning messages
and continues to process toward forking mshell on the console port.

If /dd were a hard disk or Non-volatile RAM disk, sysgo would have
performed a chx to CMDS and would have attempted to run the
SYS/startup file as a shell script before forking mshell on the console.

The system is now using modules running out of ROM. Since access
time for code in ROM is generally slower than the same code running
from RAM, you should reset the system and reboot using the Load
Boot fil e from ROMboot option. This option causes the OS-9 for
68K system in ROM to be loaded into RAM much the same as if it had
been booted from a disk, tape, or network booter. To reboot the system,
press the reset button or execute the break (br eak) command, then
reset the system using the reset (r st) command from RomBug.

$ break

WARNI NG Ti meshari ng HALTED.
(type ‘G’ to resume.)

<Called>

dn: BOBDO6FF 1BADDOOD 00000000 003E0003 00000000 003E3038 000012D0 00000000
an: 003E42A4 00000000 FF86BE74 003E42BC 003E42C8 003E4288 003EB000 003FFAEO
pc: 0000BA16 sr:2708 (--SI-7-N---)t:OFF msp:003E6FAO usp:003E4284 ~isp”
0x0000BA16 >4CDF7001 movem.| (a7)+,d0/a4-a6

Step 2.

RomBug: rst
OS- 9/ 68K Syst em Boot strap

<Cal | ed>
Sear chi ng special nenory list for synbol nodules..

dn: 000000FF 00002000 00000000 00020000 00000000 00000001 FFFFEOOO O0OO069F8
an: FF800AG6E FF800500 FFA40000 FFA20000 00007A00 00000400 OO3EBOOO 000069F8
pc: FF800970 sr:2708 (--SI-7-N---)t:OFF msp: 003E6FAQ usp: 00000000 Aiosph
O0xFF800970 >43FAFBDA I ea.l OxFF80054C(pc), al

RonBug: g

Again, enter the go command to bring up the boot menu, by pressing
letter g and the <Return> key. Select the Load Boot fi | e option from
ROM boot options by entering | r and pressing the <Return> key.

BOOTI NG PROCEDURES AVAI LABLE -------- <| NPUT>
Boot from Vi per tape drive ---------- <vs>
Boot from Teac SCSI floppy drive ---- <fs>
Boot from SCSI (SCCS) hard drive ----- <hs>
Boot from BOOTP backplane ----------- <bp>
Boot from BOOTP ani7990 LANCE -------- <l e>
Load Bootfile fromROM -------------- <lr>
Boot fromROM ----------------------- <r o>
Boot Manual ly Loaded Bootfile Image - <m >
Reconfigure the boot system--------- <rc>
Restart the system------------------ <q>

Sel ect a boot nethod fromthe above nenu: Ir
Now sear chi ng nenory ($FF820000 - $FF83FFFF) for an OS-9
Kernel . ..

An OS-9 kernel nodule was found at $FF820000
A valid OS-9 bootfile was found.

Sysgo can’t chx to ' CMDS

Sysgo can’t open 'SYS/startup’ file

$

The OS-9 for 68K system is now running. This time the system is
executing from RAM.

/5//& MICROWARE"

For More Information
See Chapter 4 for more information oni ni t module search lists.

You may now execute a number of standard OS-9 utilities contained in
this ROMed version of OS-9 for 68K:

nfree Shows the amount of free memory in the
system.

procs Shows the running processes.

nmdi r Displays all the modules available in the
system.

mdir -e Displays additional information including
the address where the module is
located.

The following example shows the results for running mfree:

$ nfree -e

M ni mum al | ocati on si ze: 4.00 K-bytes
Nunber of menory segnents: 1

Total RAM at startup: 4096. 00 K-bytes
Current total free RAM 3860. 00 K- bytes

Free nenory map:

Segnment Address Si ze of Segnent
$1A000 $3C5000 3860. 00 K- bytes
$ procs
Id Pld Gp.Usr Prior MnSiz SigsS CPU Ti ne Age Module & I/ 0O
2 0 0.0 128 4. 00k 0w 0.00 8760: 05 sysgo <>>>term
3 2 0.0 128 12. 00k 0w 0.21 8760: 05 shell <>>>term
14 3 0.0 128 32. 00k0 * 0.09 0:00 procs <>>>term

You can also try some of the other utilities such as set i e, dat e,
t node, and devs.

Congratulations, you have successfully booted your OS-9 for 68K
system.

Chapter 3: Optional Hard Disk and
Initial Networking Startup

At this point you should have booted your OS-9 target system.

If your board supports connection to a SCSI hard drive and/or has
networking capabilities, read the following sections:

 Connecting A SCSI Hard Disk
* Network Configuration
» Establishing the Hard Disk Root Directory

ﬁﬂ MICROWARE"

/\://& MICROWARE"
Connecting A SCSI Hard Disk

Manual Installation Information

If you haven'’t already done so, shut down the target machine and
connect a SCSI hard disk to the CPU board. There are various
hardware locations for the SCSI connector, including the following:

« A connector located on the faceplate of the VME card.
+« The MVME712 P2 Bus connector or the 712 breakout module.
+ A connector on the surface of the card.

Be sure to observe proper SCSI termination requirements. The end
devices on a SCSI bus should be set to provide termination for the bus.
No other devices on the bus should have termination enabled.

In some cases termination is controlled by jumper selection while other
devices/boards may require the addition or removal of resistor packs.
New devices may have automatic termination. Refer to the device
hardware manuals for more information.

If the hard drive is 4 Gigabytes or less in size, you can follow the
instructions in the following section. If the drive is larger than 4
Gigabytes, proceed to the appropriate section.

Formatting 4 Gigabyte or Smaller Drives

If your hard drive is 4 Gigabytes or less in size, use the descriptors in
the ROM boot to format the drive without using the partition utility. The
following sequence uses the format utility to format a 224 meg drive
called / hOf nt . If the drive is larger than 4 Gigabytes, format will
automatically size it to 4 Gigabytes. If you then use the partition utility,
you should select 4 Gigabytes for the size of the first partition.

$ tnode nopause
$ format /hOf mt
Di sk Formatter
0S-9/68K V3.1 Mot orol a VMEL62 - 68040

———————————— Format Data ------------
Fi xed val ues:
Di sk type: hard
Sector size: 512
Physi cal Di sk capacity: 485601 sectors
(248627712 byt es)
Logi cal Disk capacity: 0 sectors
(0 bytes)
Sector offset: O
Track offset: O
LSN of fset: $000000
M ni mum sect all ocation: 32

Vari abl es:
Sector interleave offset: 1

Formatting device: [/hOfnt
proceed? y
this is a HARD disk - are you sure? y

Note

SCSI hard disks generally do not require physical formatting unless you
wish to change the physical sector size. If you do choose to do a
physical format, you should know that on large drives, the formatting
operation may take several hours or more. During these hours, the
drive-in-use light may or may not be on. Physical formatting is still
appropriate if the drive has unreadable sectors.

On most SCSI drives, performing a verify is not necessary because the
drive should complete the verify with zero sectors bad. Selecting yes
causes every sector of the disk to be read and is appropriate if you have
any concerns about the physical format of the drive.

physi cal verify desired? n
vol ume name: Machi ne Nane: /HO

At this point if you chose to verify the drive, you will see a display of
track numbers as they are verified. If no verify was selected, you should
see the driver light blink a number of times as format writes the bitmat
on the disk.

/5//& MICROWARE"

The drive is now ready for use. After starting the networking as
described later in the chapter, proceed to Chapter 4 for instructions on
loading the disk with basic commands, startup scripts, and other useful
files.

Formatting and Partitioning Drives Larger than 4
Gigabytes

If you are connecting a SCSI hard drive that is larger than 4 Gigabytes,
you must partition the drive into virtual drives of less than 4 Gigabytes.

The OS-9 ROM boot contains the partition utility, written specifically for
partitioning and formatting your hard drive. The OS-9 for 68K Random
Block File manager (RBF) can format drives up to 4 Gigabytes in size.
For drives larger than 4 Gigabytes, RBF uses a system of breaking the
disk up into virtual partitions. The term virtual partition is used because
no partition table exists on the drive. Instead, the partition utility creates
a number of new RBF device descriptors that access the physical drive
as a number of virtual drives based on starting Logical Sector Numbers
(LSN) and size of the virtual drive/partition. In terms of RBF they appear
as separate drives while in terms of the physical drive the are virtual
partitions.

The /h0 descriptor in the ROM boot can be used to run the partition
command as described in the following section. The descriptors are
then saved on the first partition of the hard disk and help maintain the
connection between the partitioning information and the physical drive
that was partitioned. The startup file residing in the SYS directory then
loads the rest of the descriptors from the drive’s first partition, so the
rest of the virtual partitions can be accessed.

i Note

Because of a possibility of mixing descriptors and the drive they
partition, it is strongly recommended that a consistent method is used
for partitioning large drives.

Step 1.

Step 2.

In the following example the drive is broken up into 4 Gigabyte partitions
with the final partition being the only one less than 4 Gigabytes.

WARNING
Using a descriptor that is improperly matched to the virtual drive
partition can lead to file structure corruption.

View the options on partition:

$ partition -?

Synt ax: partition [<opts>] <device name> {[<descs>] [<opts>]}
Function: partition a large (>4GB) hard di sk
Opt i ons:

-r overwrite existing files

-w=<di r> output generated device descriptors to <dir>
-z=<path> read partition device descriptors from <path>

Start the partition utility using the /hO descriptor that is already part of
the ROM boot. The hO drive will also be used to write the descriptors
after they are created. Once the first partition is formatted and the
descriptors are saved in the Root directory of the disk, they can be
loaded into memory so that the additional partitions can be accessed.
You can also use the /dd ramdisk drive with the -w option. However, you
must copy the descriptors to the hard drive so they won't be lost at
system reset.

The default values are used in most cases. The example drive is
approximately 21.61 Gigabytes. The convention of hO1 refers to the
drive with a SCSI ID of O (zero), partition 1.

Note
The /h01 and /hO will refer to the same partition once the /h01 partition
has been formatted.

4;XIWCROWARE

$ partition -w=/h0 /hO<CR>
enter partition name (h01) =><CR>
enter a partition size (4.00@) =><CR>

enter partition name (h02) =><CR>
enter a partition size (4.00G8) =><CR>

enter partition name (h03) =><CR>
enter a partition size (4.00G) =><CR>

enter partition name (h04) =><CR>
enter a partition size (4.003) =><CR>

enter partition name (h05) =><CR>
enter a partition size (4.003) =><CR>

enter partition name (h06) =><CR>
enter a partition size (1.6138) =><CR>

create new partition

edit existing partition

delete existing partition

di splay partition information

write device descriptors for partitions
format a partition

format all partitions

.oexit

pl ease enter conmand nunber =>4

partition names and sizes:

N R~WLNE

partition 1 (h0l): 4.00GB (8388607 bl ocks)
partition 2 (h02): 4.00GB (8388607 bl ocks)
partition 3 (h03): 4.00GB (8388607 bl ocks)
partition 4 (h04): 4.00CGB (8388607 bl ocks)
partition 5 (h05): 4.00GB (8388607 bl ocks)
partition 6 (h06): 1.61GB (3379609 bl ocks)

Create new partition

edit existing partition

del ete existing partition

di splay partition information

write device descriptors for partitions
format a partition

format all partitions

exit

ONoo~wWNE

Step 3.

You can edit or delete partitions to make any changes before actually
formatting the virtual partitions in the next step. Using the f or mat al |
partitions produces the following queries. You can also choose to
format single partitions using option 6.

At a minimum you must format the first partition, /h01 so that the
descriptors can be saved to the drive.

pl ease enter command nunber =>7
format partition hOl? y
formatting partition hO1...
format partition h02? y
formatting partition h02...
format partition h03? y
formatting partition h03...
format partition h04? y
formatting partition ho4...
format partition h05? y
formatting partition hO5...
format partition h06? y

create new partition

edit existing partition

del ete existing partition

di splay partition information
wite device descriptors for partitions
format a partition

format all partitions

exit

N O RWNE

Finally, the descriptors are saved to the Root of the first partition. After
the descriptors are saved, they can be reloaded for accessing the
additional partitions.

pl ease enter comrand nunber =>5

create new partition

edit existing partition

del ete existing partition

di splay partition information

write device descriptors for partitions
format a partition

format all partitions

exit

NG REWDd R

pl ease enter comrand nunber =>8
paritions may need formatting - format now? n
$ dir /hO

4;XTWCROWARE

Directory of /h0 22:34:43

ho1l hOo1f h02 h02f nt h03
h03f nt ho4 h04f nt h05 hO5f mt
h06 h0o6f nt

$ load -d /ho/*

$ free /h02

"h02" created on: Aug 16, 1999

Capacity: 8388607 sectors (512-byte sectors, 32-sector clusters)

8388448 free sectors, |argest block 8388448 sectors

4294885376 of 4294966784 bytes (4095.92 of 4095.99 M) free on nedia (99%
4294885376 bytes (4095.92 M) in largest free bl ock

The drive is now ready to use. For ease of loading the partitions in the
future, store them in a sub-directory of the root directory called
PARTI TI ONS on a partitioned drive, for example / hO/ PARTI TI ONS.

The startup file can then load the descriptors using commands such as:

Load -d /hO/partitions/* OR Load -d /hOl/partitions/*
Load -d /hll/partitions/*

Once the nv or copy and del commands are available on the target
machine, it is easy to move the descriptor files out of the root directory
into the PARTI TI ON subdirectory.

Network Configuration

The example file, MNOS/ SRC/ SYS/ st art spf . ndbnod contains a
sequence of commands used to start networking on your target system
for the first time.

You must edit the file to set the information for your networking
environment. Once the file is edited, you can use your editor to cut lines
from the file and paste them into the OS-9 command line running on the
target. Alternatively, you can type them on the command line and edit
them as you proceed.

If your system has a hard drive that was configured according to the
previous section, you can save the i net db3 module to the disk once it
is created. Alternatively, once FTP has been started, you can transfer
your edited st ar t spf . ndbnod file to the hard drive and simply run it
as a shell script to start the networking after each reboot.

For More Information

Starting the networking for ROM based systems is described in
Chapter 5.

Following is the example st art spf . ndbnod file:

-t

LR R R R R R S

* Initial Startup sequence for networking using the Rommred Boot

*

Lines that start with ** should be used as exanples to set val ues

appropriate for your network environent. Lines currently not commrented
out should not need to be customi zed for the initial startup of the
target board

the target board

NOTE: Once a storage device is available, the inetdb3 can be saved to

*
*
*
*
*
*
*
Edit this file and if possible cut/paste each appropriate line onto the *
*
*
*
*
di sk and sinmply reloaded via a startup file. *

*

*

*
*
*
*
*
*
* console comand line to initially start the SPF/ Lancom networki ng on
*
*
*
*
*
*

R R R R R R R R R R R TR

/5?\ MICROWARE"

* Inititialize System MBuf system call
* NOTE: This is already done via init nodule in npst cases.
* NOTE: MBinstall utility not in ROVBoot

- X
*mbi nstal |

- X

*

* Create inetdb3 nodul e

* Type ndbnmod -? for help on paraneters

*

ndbnod create inetdb3 11 400 0 160 0 0 O 100 O 400 65 256

*

* Initialize interface information

* Change 192.168.0.5 to your systems |P address

* Change 255.255.255.0 to your system s netnask

*

**ndbnod i nterface add enet0 address 192.168.0.5 net mask 255. 255. 255. 0 bi ndi ng
/ spi e0/ enet

*

* Define domain and Addresses of DNS Servers

* Change "MyDomai n.conl to your domain nane

* Adj ust addresses after "server" to match your DNS server’s |P address
* Renove second server entry if not requred

**ndbnod resol ve MyDomai n. com server 192.168.0.32 server 192.168.0. 254

* Set hostnane
* Change "MHost Nane" to the nanme of your system

**ndbnod host nane MyHost Nane

* Add | ocally defined Host nanes

* Not required if DNS avail abl e

* Room for approx 16 avail abl e

* Add | P addresses and Hostnanes as desired.

**ndbnod host add 192. 168. 0.5 Hawk5
**ndbnod host add 172.16. 0. 32 DNServe

* Add Default and other Routes
* Change 192.168.0.254 to the | P address of your default router

**ndbnod route add Default 192.168.0. 254

* Start SoftStax networking

*

i pstart
*

* Start Routing deaenon (Not in ROM Boot)

*

*routed <>>>/nil &

*

Start services Daenon(s)

*

*

* Chd assunes /dd device (ramdisk) is part of Rom boot.

* Setup an execution directory (optional)

* Chx to the executiton directory (optional)

* inetd: use once login and password file is available in a SYS directory
* telnetd: with auto start of nshell (no I|ogin)

* ftpd: with no login authentication

*

chd /dd

- nx

makdi r /dd/ CVDS

chx /dd/cnds

-X

*inetd <>>>/nil &

telnetd -f=nshell <>>>/nil &
ftpd -u <>>>/nil &

*

* spfndpd: Start Hawk User state debuggi ng daenon
* spfnppd: Start Hawk Profiling Daenon (Not in ROM Boot)

spfndpd <>>>/nil &

*spfnppd <>>>/nil &

Starting spf ndpd is only required if you are connecting to your target
with Hawk during this session (before the next reboot). As noted in the
comments, t el net d has been started so that a telnet session to your
machine will immediately provide a “$” mshell prompt without any login
required. Additionally, FTP has been started to not authenticate logins.
While you will need to enter a username and password, they are not
checked, therefor not requiring the login command or a password file.
These daemon startup methods are provided for the initial startup of the
system and loading of the optional attached hard drive and NOT
recommended as the normal startup sequence.

For More Information
See the MNOS/ SRC/ SYS/ st art spf file for standard startup
examples.

Test your target system by running telnet or ftp from your Host system to
the target. You can also telnet or ftp from the console on your Target
machine to other machines on your network.

/5//& MICROWARE"

Establishing the Hard Disk Root Directory

At this point, your primary hard drive should be formatted and you
should have established networking connections. The final step is to
load the basic disk structure required on the Target system.

Prepare Image on Host machine

Step 1.

_ B

Step 2.
Step 3.

Using Windows Explorer (or other disk browser) open the ports
directory for your board.

Note
The board guide for your specific board contains the exact pathlist.

For example, the MVME162 is MNOS/ OS9/ 68040/ PORTS/ MWME162.
Generally, the CMDS directory is built up by starting with the 68000
CMDS and then overlaying additional CMDS from appropriate
directories on top.

Create a sub-directory called Di sk_I| mage.
Build the Di sk_1 mage/ CVDS directory.
* Right click on MADS/ OS9/ 68000/ CVDS and select copy.
* Rightclick on the Di sk_I| nage directory and select paste.
* Right click on MADS/ OS9/ 68020/ CVDS and select copy.
* Rightclick on the Di sk_I| nage directory and select paste.
When the dialog box asks about replacing files, click on yes to all.
* Right click on MADS/ OS9/ 68040/ C\VDS and select copy.

* Rightclick on the Di sk_| nage directory and select paste replacing
files with yes to all.

Step 4.

* Right click on MAOS/ OS9/ 68040/ PORTS/ WMEL62/ CVDS and
select copy.

* Rightclick on the Di sk_I| mage directory and select paste.

Build the Di sk_I| mage/ SYS directory.

* Right click on MADS/ SRC/ SYS and select copy.

* Rightclick on the Di sk_I| mage directory and select paste.

* Right click on MAOS/ OS9/ SRC/ SYS and select copy.

» Right click on the DI SK_| mage directory and select paste.

* When the dialog box asks about replacing files, click on yes to all.

Add other files as desired.

Transfer Image to Target Machine

Step 1.

After preparing your image on the host machine, you can use FTP to
transfer the files from the host to the root directory of your target
machine disk. Following is an example of this process.

Create a TAR Archive.

Using a Windows hosted t ar . exe program create a tar archive of the
Di sk_I mage directory by changing into the Di sk_| nage directory and
running a command, on the host, similar to:

>tar -cvf tar.file CMDS SYS

C\VDS/

C\VDS/ ar p
CVDS/ attr
CMVDS/ backup
CMDS/ beam
CMDS/ bf ed
CMDS/ bi nex. . .

You can also add additional files and directories with this command line.

Step 2.

4;XIWCROWARE

For More Information
You can find an example of a Windows hosted tar program at the
following url:

http://ww. reedkot| er.coml RKTOOLS/ r kt ool s. ht m

FTP thetar. fil e tothe root directory of your target machine disk
using binary mode.

Note
The procedure will vary slightly depending on which FTP software you
are using.

From your Windows host machine, select Start -> Run. Type the
following:

ftp <target machine>

The following displays in a DOS shell window. Enter the commands as
shown.

Connected to <target machi ne>.

220 jim .mcroware.com OS-9 ftp server ready
User (jim.mcroware.com(none)): <Cr>

331 password required for (none)

Password: <Cr>

230 user (none) | ogged in

ftp> bin

200 Type set to |

ftp> hash

Hash mark printing On (2048 bytes/hash mark).
ftp> cd /hO

250 CWD command ok

ftp> put tar.file /pipeftar.file

200 PORT conmand ok

150 Opening data connection for /pipe/tar.file
(172.16.4.207,4712).

BHBHBHIH

This starts the download to a named pipe on the target. The download
pauses once the named pipe is full.

Step 3. On the OS-9 target machine, untar from the named pipe.

$ chd /h0O
$ tmode nopause
$ tar -xvf /pipe/tar.file

dr wxrwxrwx 0/ 0 0 Sep 2 11:40 1999 CwvDS/
-rwrwrw 0/0 6934 Jul 14 21:30 1999 CWVDS/ arp
-rwrwrw 0/0 4284 Jul 14 09:34 1999 CMVDS/attr

i Note

Tar is included in the ROM boot on the MVME target machines.

Step 4. Onthe host, end the FTP session when the transfer is complete.

A
226 Transfer conplete
7055360 bytes sent in 164.60 seconds (42.86 Kbytes/sec)
ftp> quit

221 Goodbye

Step 5.

Step 6.

ﬁﬁ MICROWARE"

On the target, set the file permissions of the files in C\VDS:

$ chx /h0/CMDS
$ attr -ns CMDS SYS

$ dir -ru CMDS'! attr -nspeeprrz
d-ewew CMDS/ BOOTOBJS

ew ewr CMVDS/ MAUI DEMO

ew ewr CMDS/ NOCSL

--ewew CMDS/ arp

--ewew CMDS/attr

--ewew CMDS/ backup ...

d-
d-

Once the CVDS directory is on the hard drive, you can access the
additional utilities by performing the chx command above.

Correct the line termination of the files in SYS:

$ chd /h0/SYS
$ cudo -cdo *

This procedure converts the line terminations on text files from
Windows (<cr><If>) to OS-9 (<cr>).

For More Information
Chapter 4 describes customizing your boot so the SYS/startup file is
run as the system boots up.

For More Information
The files in the SYS directory should be customized as desired.
Chapter 5 provides an overview of the networking startup methods.

Chapter 4: Boot and ROM
Customizing

This chapter includes the following topics:

Overview

PORTS Directory Organization

BLS Makefiles

Modifying Bootlists

Making Boots

Tape Booting

BootP Booting

Customizing ROM images
Download Booting

ROM Customization (OEM Package)

Aﬂ MICROWARE"

/\://& MICROWARE"
Overview

Each CPU Board Level Solution (BLS) package contains a version of
0OS-9 for 68K that can be booted from ROM. This chapter explains
customizing the BLS and preparing a new boot for the CPU card. The
basics for modifying the modules found in ROM are also covered.

For More Information
Chapter 2 describes booting the ROM-based system.

For More Information

Issues related to configuring the networking capabilities are covered in
Chapter 5.

Once your development system is configured with the MAOS directory
structure from a BLS or OEM package, you can customize the target
system for your specific requirements.

Many of the examples in this chapter are based on the MVME162 BLS
package. The board directory for the MVME162 is
MAOS/ OS9/ 68040/ PORTS/ WMEL62.

For More Information

Refer to Chapter 1 of this manual for an overview of the MAOS directory
structure. The location of the PORTS directory for each BLS is supplied
in Enhanced OS-9 for 68K MVME Board Guide.

PORTS Directory Organization

Within the 68000/ PORTS, 68040/ PORTS, 68060/PORTS and

CPU32/ PORTS directories, sub-directories are created for each board to
which OS-9 for 68K has been ported. The port directory for a BLS CPU
board contains a number of subdirectories and files enabling you to
adapt the board to your specific requirements. The MVME162 port
directory contains the following subdirectories and files:

BOOTLI STS

BOOTS

DI SK_| MAGE

INIT

PCF
Pl PE
RBF

ROM CBOOT

Example boot module lists (bootlists) for
making boots.

Makefiles for making a number of default
boot images.

An optional directory for use in gathering
the files to be transferred to systems
configured with a hard drive or flash
drive.

Utilities for use with the board. The
BOOTOBJ S subdirectory and its
subdirectories contain the board specific
system modules.

Makefiles for creating different init
module configurations.

PC File manager descriptor building.
Pipe descriptor building.

Random Block File manager disk
support build directory.

Ports using the CBOOT based ROM
technology use this directory to build
ROM images with or without ROMBUG
and to change the ROM based bootfile
for the system.

SBF

SCF

scsl
SPF

SYSMODS

systype. d

defsfile

/5//& MICROWARE"

Ports using Modular ROM technology for
their ROM code or a P2 loadable
debugging and low level communication
system build components from this
directory.

Sequential Block File manager Tape
support build directory.

Sequential Character File manager
support build directory. Descriptors and
board specific drivers (OEM Package
only) are built from here.

SCSI support build directory (OEM
Package only).

Stacked Protocol File manager
(SoftStax) configuration build directory.

A variety of additional system modules
specific to the board are built from here.
Ticker, Real Time Clock, and snooper
modules are examples. (OEM Package
only).

The syst ype. d file contains the
hardware and software definitions to
create the board specific modules. The
definitions are an excellent source for
information about how the hardware is
set up by the ROMs included with the
BLS. Any changes made to descriptors,
i ni t modules, and other user
configurable modules normally start by
editing the syst ype. d file and then
running the appropriate makefiles to
recreate the new OS-9 module.

The def sfil e inincluded by many
source files to reference required def s.

BLS Makefiles

This is an example list of makefiles included in the MVME162 BLS
along with the hierarcy of makes called from parent makefiles. The

specific makefiles vary considerably between boards.

Table 4-1 MVME162 PORT Directory Makefiles

Makefile
Makefile Called Makefile Called Called Comments
I NI T/ mekefile
I'NIT/init_rom mak
Init_rom
I NI T/i ni t_dO. make
I nit_do
I NI T/i ni t _hO. make
I nit_ho
INIT/i nit_dd. make
Init_dd

SYSMDS/ makefil e

SCF/ makefile

RBF/ makefil e

SBF/ makefile

SCSI / makefile

SYSMODS/ snoop. make

SYSMODS/ cl ock. make

SCF/ scf _descri pt ors. make

SCF/ scf _drivers. make (CEM

RBF/ r bf _descri pt ors. make
RBF/ r bf _t eac_descri ptors. make
RBF/ rbf _vccs_descri ptors. make

RBF/ r bf _nvram descri ptors. make

SBF/ sbf _vi per _descri ptors. make
SBF/ sbf _exabyt e_descri pt ors. make

SBF/ sbf _t eac_descri ptors. make

Ticker and real time clock modules

Board’s SCF descriptors

Board’s SCF drivers

ﬁﬂ MICROWARE"

Table 4-1 MVME162 PORT Directory Makefiles (continued)

Makefile Called

Makefile Called

Comments

SPF/ makefil e

PCF/ makefil e

BOOTS/ makefil e

ROM_CBOOT/ makefil e

CEM Only Common makefil es

SPF/ SP82596/ makefil e

SPF/ ETC/ makefil e

PCF/ pcf _descri ptors. make

BOOTS/ dO_boot fi | e. make
BOOTS/ hO_boot fil e. make

BOOTS/ vi per _t ape_bootfil e. make

ROM_CBOOT/ r om make
ROM_CBOOT/ r ombug. make

ROM _CBOOT/ rom_i ni t ext . make
ROM_CBOOT/ r om boot er s. make

ROM_CBOOT/ rom boot fi | e. make

ROM_CBOOT/ r om_conmon. make

ROM _CBOOT/ rom seri al . make
ROM_CBOOT/ r om por t . make

ROM _CBOOT/ r om descri pt or s. make

ROM_CBOOT/ r om i mage. make

Ethernet descriptor and driver (OEM
only)

inetdb modules

Nobug version of ROM

Rombug version of ROM

Builds the ROM init extension library
Builds raw sysinit and booters image

Makes ROM bootfile

Creates rom conmmon. |
Creates romserial.l
Creates romport.|
Creates romdescriptors.|

Creates rom i mage. |

i Note

On Windows cross-hosted development systems, makefiles must be
executed with the os9nmake command.

The master makefile initiating all the others is makefi | e. Only the
modules that require rebuilding are rebuilt. Bootfiles and ROM images
are always reconstructed.

/\://& MICROWARE"
Modifying Bootlists

This section contains a bootlist file with enhanced descriptions of the
modules available for use in an OS9Boot file. The process of making a
new boot involves the following basic steps:

« Creating or modifying an appropriate bootlist file

» Generating a boot for the machine using one of the bootfile
makefiles

The pathlist contained in the bootlist is for the MAOS directory structure
and is relative to the root of the board’s port directory. Modules
customized for a particular system or CPU board go down to the local
CVDS/ BOOTOBJ S directory, while generic system modules and VMEbus
peripheral boards go up and over to reference the modules for use in
the boot.

If you choose to move the modules for creating boots to a target’s

/ HO/ CVDS/ BOOTOBJ S directory, simply remove all relative pathlists
before the C\VDS part of the pathlist and then place the edited bootlist in
an/ HO/ BOOTLI STS directory. The process described in Chapter 3 for
creating the hard drive disk image should have included all the modules
needed for making a boot. As you customize some modules on your
development system, additional modules may need to be transferred to
the target system disk drive.

i Note

If you choose to edit any of the bootlist files, do not add a blank line
within the file. 0s9gen stops reading lines when it encounters a blank
line.

Most utilities have a - z option that can be used with the bootlist files. A
convenient way to verify that all the modules in your bootlist exist and
have valid CRCs, is to execute i dent - qz=boot i st s/ xxx. bl from
the root of the CPU'’s port directory (MAOS/ OS9/ 68040/ PORTS/
MWMEL62). To add modules to the boot, simply un-comment the line by

removing the asterisk (*) at the beginning of the line containing the
reference to the module. To remove the module, add the asterisk (*) in
the first character position on the line. When ready to generate a boot,
use the xxx_boot fi | e. nake makefile to generate a bootfile that
corresponds to the bootlist you have edited in the

CVDS/ BOOTOBJ S/ BOOTFI LES directory. You may also use the os9gen
command as described later in this chapter.

The following BOOTLISTS/rom.bl file is the bootlist used for building the
boot contained in the ROM image supplied with the MVME162 BLS.

Note
.stb modules named in the bootlists are only available to OEM package
customer that have rebuilt the appropriate modules from source.

Khkkhkhkhhhkhhkhhkhhhhhkhhkhhkhhkhkhhkhkhkkk*x

** Bootlist for the MVMEL62

* %

** Pathlists are relative to the MAOS/ OS9/ 68040/ PORTS/ WMEL162 or machi ne

** directories based on and parallel to the MVWWE162 Port directory.

** NOTE: .stb nodules are only avail abl e when buil di ng nodul es from SRC.

** NOTE: renove/add | eading conment "*" to add/renove nodules in the OS-9 boot

The kernel and IOMan sections allow you to choose one of the four
kernels available. The kernel is available in a standard and atomic
version.

For More Information
Refer to the OS-9 for 68K Processors Technical Manual for more
information on the differences between the kernels.

With each kernel, you can select the original colored memory allocator
or a newer buddy allocator that allocates memory in powers of two. For
example, if you ask for 33KB of memory, the system would actually

/5//& MICROWARE"

allocate 64KB to the process. Most projects requiring the atomic kernel
can be developed under the development kernel with its enhanced
debugging and protection capabilities and then moved to an atomic
based system once the code is known to function properly. Most users
use the OS-9 Unified 1/0O system to communicate with peripherals and
must include the IOMAN matching the kernel in use. Choose one kernel
and matching IOMAN.

*

* 0OS-9 Kernel - select one variant:

* Al nodul es naned: Kker nel

*

* Devel opnent kernel - Standard nenory all ocator
..l..1../168040/ CVDS/ BOOTOBJS/ dker 040s
*../../../68040/ CVMDS/ BOOTOBJS/ STB/ dker 040s. stb
* Devel opnent kernel - Buddy nenory all ocator
* ./../../68040/ CVMDS/ BOOTOBJS/ dker 040b
*../../../68040/ CVMDS/ BOOTOBJS/ STB/ dker 040b. st b
* Atom c kernel - Standard nmenory all ocator

* ./../../68040/ CVMDS/ BOOTOBJS/ aker 040s
./..1../68040/ CVMDS/ BOOTOBJS/ STB/ aker 040s. stb
Atom ¢ kernel - Buddy nenory all ocator
./..1../68040/ CVDS/ BOOTOBJS/ aker 040b
.l..1../68040/ CVMDS/ BOOTOBJS/ STB/ aker 040b. st b

|l oman: select one to match sel ected kernel above:

I

./..1../168000/ CVDS/ BOOTOBJS/ i oman_DEV
../../../68000/ CVDS/ BOOTOBJS/ STB/ i oman_DEV. st b
./..1../68000/ CVDS/ BOOTOBJS/ i oman_ATOM
./..1../168000/ CMDS/ BOOTOBJS/ STB/ i oman_ATOM st b

L

Init Module

A selection of i ni t modules are created by the makefiles for the port.
Review the contents of the i ni t modules and adjust the fields to match
your requirements. The fields of the i ni t modules are generally
modified by adjusting the values in the syst ype. d file and remaking
the i ni t module. On resident OS-9 for 68K machines, the contents of
the i ni t module can be viewed and modified using the noded utility.
The i ni t modules included are those used by the initial bootable
media for floppy (d0), hard disk (h0), tape, and ROM boots. Select only
onei nit module.

Init nmodul e: Select ONLY one.

init_dd: Init nmodule with /DD initial disk device and runs sysgo
init_hO: Init mbdule with /hO initial disk device and runs sysgo
init_dO: Init mbdule with /DO initial disk device and runs sysgo
init_tape: Init module with /DD initial disk device and runs tapestart
init_rom Init nodule with NOinitial disk device and runs sysgo

L R R

CMVDS/ BOOTOBJS/ I NI TS/ init_dd
*CVDS/ BOOTOBJS/ | NI TS/ i ni t _hO
*CVDS/ BOOTOBJS/ | NI TS/ i ni t _dO
*CVDS/ BOOTOBJS/ | NI TS/ i nit _t ape
*CVDS/ BOOTOBJS/ | NI TS/ init_rom

/5//& MICROWARE"

Customization Modules

The following customization modules enable you to include caching for
a CPU board (cache040) , process address space protection (SSM,
enable bus snooping (Snoopxxx), and use a variety of 0S-9 P2
modules. The selected modules must also be included in the i ni t
module’s P2 initialization list. Modules may be named in the i ni t
module that are not actually in the boot, enabling you to change the
boot without changing an i ni t module. The Atomic kernel does not
support the SSM module. Choose all that are appropriate.

Cust om zati on nodul es:

Snooper Circuit Enable Mdul e
(if not present, the snooper is not enabled!)

L

CMVDS/ BOOTOBJ S/ snoopl162
CMVDS/ BOOTOBJ S/ STB/ snoopl62. sthb

*

*

* Cache Control nodul e

* (If not present, cache is disabled!)
*

./..1../168040/ CVDS/ BOOTOBJS/ cache040
..l..1../168040/ CMDS/ BOOTOBJS/ STB/ cache040. stb

MWJ Control nodul e

ssnD40 provides write-thru caching in supervisor state,
ssnD40_cbsup provi des copy-back caching in supervisor state

User state cache node default (both versions) is wite-thru,

and this can be over-ridden via the CachelList entries in systype.d

R T

..l..1..168040/ CMDS/ BOOTOBJS/ ssnD40
./..1../168040/ CVDS/ BOOTOBJS/ ssnD40_cbsup
..l..1../168040/ CVDS/ BOOTOBJS/ STB/ ssnD40. stb

FPSP/ FPU Mat h emul ati on nodul es

FPSP provi des 68681/ 68682 conpatibility for the 68040 CPU.

FPSP is specifically for the 68040 and should not be used with
68040Ec and 680040LC processors.

FPU is a general purpose math enul ation nodule. It provides basic
float and double support as required by the Clibraries.

./..1../68040/ CMDS/ BOOTOBJS/ f psp040
../..1../68040/ CMDS/ BOOTOBJS/ STB/ f psp040. stb
../..1../68000/ CMDS/ BOOTOBJS/ f pu
*../../../168000/ CVMDS/ BOOTOBJS/ STB/ f pu. stb

R T T RN

Clock Modules

The t kxxx module is a driver providing the system with a periodic
interrupt generator. The ticker is required for system time-slicing, sleep
times, system date/time, and statistics information. The rt cl ock

(rt cxxx) module is a driver used to access the system’s time of day
clock. Generally the time of day clock is a battery-backed chip from
which the system’s time is set upon reset or power up. Some systems
do not have rtcxxx modules.

System cl ock nodul e
System ticker hardware driver

* %k ok *

CMVDS/ BOOTOBJS/ t k162
CVDS/ BOOTOBJS/ STB/ t k162. stb

Real Time C ock nodul e naned: rtclock

*
*
* Battery backed tinme of day chip driver
*
* rtcl62: rtclock module for MVMELG2

*

CMVDS/ BOOTOBJS/ rtcl162
* CVMDS/ BOOTOBJS/ STB/ rt c162. sthb

SCF and Pipeman

The following section includes the Serial Character File manager (SCF)
and Pipeman.

The nul | driver is used with the ni | descriptor for SCF redirection to
/ ni | and with Pipeman as the driver for the / pi pe devices.

The pi pe module is the standard descriptor for unnamed pipes used by
the shell. It uses the default buffer size.

The serial ports section in the following code contains the scxxx driver
and descriptors describing the serial ports on the board. t er mis
generally the same port as used by RomBug.

The t x descriptors are generally used for terminals while px
descriptors are used for printers or devices requiring no line editing.

/5//& MICROWARE"

Some boards have parallel ports. The drivers are generally named
scpxxx, with the descriptor named p. Choose SCF along with all
required drivers and descriptors.

Sequential Character

File Managers, Drivers and Descriptors:

scf: Serial Character File Mnager

null: Null Driver

nil: Null Driver’'s device descriptor

pi peman: Pipe File Manager (used Null Driver)
pi pe: Pipe device descriptor

R

../..1../68000/ CMDS/ BOOTOBJS/ scf
*../../../68000/ CMDS/ BOOTOBJS/ STB/ scf. stb
../..1../68000/ CMDS/ BOOTOBJS/ nul |
../..1../68000/ CMDS/ BOOTOBJS/ ni |
../../../68000/ CVMDS/ BOOTOBJS/ pi penman

*. ./../../68000/ CMDS/ BOOTOBJS/ STB/ pi penan. stb
../..1../68000/ CMDS/ BOOTOBJS/ pi pe

*

* SCF Serial port Drivers and Descriptors
*

CNVDS/ BOOTOBJS/ sc162

* CVMDS/ BOOTOBJS/ STB/ sc162. stb

CMVDS/ BOOTOBJS/ t erm

CMVDS/ BOOTOBJS/ t 1

CMDS/ BOOTOBJS/ pl

Some boards such as the MVME167 also have parallel ports available.
This example shows the driver and descriptor lines for the MVME167.

*

* parallel printer port
CVDS/ BOOTOBJS/ scpl67
CVDS/ BOOTOBJS/ p

An example peripheral VME serial board is to be included in the
system. Its driver and descriptors are included here with the onboard
SCF devices. (These lines are not included in the mvmel162 rom.bl
bootlist.)

*

* MVME335 Serial Peripheral board

../ 68000/ PORTS/ M\WME335/ CMDS/ BOOTOBJ S/ sc335
../ 68000/ PORTS/ M\WME335/ CMDS/ BOOTOBJS/ t 10
../ 68000/ PORTS/ M\WME335/ CMDS/ BOOTOBJS/ t 11
../ 68000/ PORTS/ M\WME335/ CMDS/ BOOTOBJS/ t 12
../ 68000/ PORTS/ M\WME335/ CMDS/ BOOTOBJS/ t 13

\\\\\
~ o~~~ ~

RBF

The next section includes the Random Block File manager (RBF),
drivers and descriptors. The RAM driver and r O descriptors create a
RAM disk of varying sizes. The dd_r O is the same device as r 0 but
with the device name / dd.

You may choose to load the RAM driver in the boot but load the r O
descriptors from disk after the machine is booted. This allows loading

r O descriptors for different sized RAM disks without needing to remake
the boot. The rom.bl bootlist contains an rO and dd_rO descriptor. The
init module is set to use /dd. Once the networking has been started on
the target, the /dd/SYS directory can be used to store t er ntap,

er r msg, and other reference files normally looked for on the default
device.

The next section is for loading the low level SCSI host adapter driver.
The scsi xxx driver is used by both RBF and SBF high level SCSI
drivers to access peripherals on the SCSI bus.

External peripheral cards such as the MVME320 or MVME327 might be
included in this area of the bootlist. Select all that are appropriate.

/5?\ MICROWARE"

* %

* Random Bl ock File Manager,

* Drivers and Descriptors:

*
./../../68000/ CVMDS/ BOOTOBJS/ r bf

* ./../../68000/ CVMDS/ BOOTOBJS/ STB/ rbf . stb
./../../68000/ CNMDS/ BOOTOBJS/ r am

CVDS/ BOOTOBJS/ r 0

CMVDS/ BOOTOBJS/ dd_r 0

* CVDS/ BOOTOBJS/ r 0_3m

* CMDS/ BOOTOBJS/ dd_r 0_3m

*

* SCSI Controller

*

../ WME162/ CVDS/ BOOTOBJS/ scsi 162

*. ./ M\WMEL62/ CVDS/ BOOTOBJS/ STB/ scsi 162. stb

* SCSI Hard Drive Support
* RBVCCS driver and descriptors

../..1../68000/ CMDS/ BOOTOBJS/ r bvcces
*../../../68000/ CMDS/ BOOTOBJS/ STB/ r bvccs. stb
CMDS/ BOOTOBJ S/ VCCS/ h0

CMDS/ BOOTOBJ S/ VCCS/ hOf mt

RBSCCS driver and descriptors (obsolete)

./../../68000/ CVMDS/ BOOTOBJS/ rbsccs
./../../68000/ CMDS/ BOOTOBJS/ STB/ rbsccs. stb
CMDS/ BOOTOBJ S/ SCCS/ h0

* CVDS/ BOOTOBJ S/ SCCS/ hof nt

*

* SCSI Fl oppy Drive Support

* RBTEAC driver and descriptors

*

*. ./../../68000/ CMDS/ BOOTOBJS/ r bt eac
*../../../68000/ CVMDS/ BOOTOBJS/ STB/ rbt eac. stb
* CVDS/ BOOTOBJ S/ TEACFC1/ dO

E O

SBF

The Tape Manager section adds the Serial Block File manager (SBF) to
the boot. A variety of SCSI tape drives are supported. Each of the
drivers requires the scsi xxx low level SCSI driver be available in
memory for the device to be initialized.

Tape Manager:

..1../1../68000/ CVDS/ BOOTOBJS/ sbf
../..1../68000/ CVDS/ BOOTOBJS/ STB/ sbf. stb

Archi ve Vi per/DAT drives

../../../168000/ CVMDS/ BOOTOBJS/ shvi per
./..1../68000/ CMDS/ BOOTOBJS/ STB/ sbvi per.sth

* CMDS/ BOOTOBJS/ VI PER/ nt 0

* CMDS/ BOOTOBJS/ VI PER/ nt 1

* CMDS/ BOOTOBJ S/ VI PER/ dat

*
*
*
*
*
* Tape Drivers and Descriptors
*
*
*
*
*.

TEAC Cassette

./..1../68000/ CVDS/ BOOTOBJS/ sbt eac
./..1../68000/ CVMDS/ BOOTOBJS/ STB/ sbt eac. stb
CVDS/ BOOTOBJ S/ TEACMT2/ nt O

Exabyte drive
./..1../68000/ CMDS/ BOOTOBJS/ shgi ga

./..1../68000/ CVDS/ BOOTOBJS/ STB/ sbgi ga. stb
CMVDS/ BOOTOBJ S/ EXABYTE/ nt 2

N T

/5//& MICROWARE"

Initial System Process

The next section selects the first process executed by the system. The
boot’s i ni t module must reflect the name of the module selected
here. Sysgo is a general purpose program that sets up the initial CVDS
directory and tries to execute a st ar t up file with the help of nshel | .
tapestart andshel | are used by the tape distribution media to start
the system and then create a system RAM disk from the second file on
a tape. Including shel I or nshel | inthe bootis useful when there
is not a device from which to load the shell module at boot time. The

I ni t module can be modified to use shel | or nshel | as the initial
process and to execute a st ar t up file or sequence without using
Sysgo.

*

Initial system process:

sysgo: runs SYS/startup script, (re)forks nshell
sysgo_nodi sk: forks mshell (no startup file run)
sysgo_tsnmon: runs SYS/startup script, chains to tsnon
sysgo_shell: runs startup script, (re)forks shell
conpatible with earlier OS-9 versions

NOTE: sysgo nodul es require nshell except sysgo_shl |
whi ch requires shell.

NOTE: the init nodule can be configured to use shell
or nshell as the initial process instead of sysgo.
nshel | : extended functionality shell (standard)
shell: origininal small shell

tapestart: used in tape based initial shipping boots

o T T]

../../../68000/ CVMDS/ BOOTOBJS/ sysgo

* ./../../68000/ CVMDS/ BOOTOBJS/ sysgo_nodi sk
../../../68000/ CVMDS/ BOOTOBJS/ sysgo_t smon
*../../../68000/ CMDS/ BOOTOBJS/ sysgo_shel |
../..1../68000/ CMDS/ nshel |

*. ./../../68000/ CVDS/ shel |
*../../../168000/ C\MDS/ t apest art

*

Additional Modules and Utilities

This area includes additional modules such as the I/O and Math shared
trap libraries. csl is used for Ultra C libraries. ci o, mat h, and mat h881
are used with programs compiled with the original Microware C
Compiler and libraries. See the Ultra C/C++ documentation for more
information on these modules. Additional utilities and applications may
be added to the boot. Adding additional modules is particularly useful
when using BootP to boot diskless systems or as in this case, when
building an embedded boot for inclusion in the ROM.

Addi ti onal system Support nodul es can be added here.
csl: C Shared Library for Utra C conpiled binaries
cio: CIlI/Olibrary for Mcroware C conpiled binaries
mat h881: Mat h881 sinulation library for Mcroware C
conpi |l ed binaries

./..1..168020/ CMDS/ csl

..1..1../68020/ CMDS/ ci 0

..1..1../68020/ CMDS/ mat h881

I R

OS Uilitities used during System configuration
See utilities manual for usage.

L

..l../../168000/CVDS/ attr
../../../68000/ CMDS/ br eak
*. ./../../68000/ CMDS/ chown
*../../../168000/ CVMDS/ copy
../../..168000/ CMDS/ dat e
*../../../168000/ CVMDS/ dcheck
..l../..168000/ CMDS/ dei ni z
*../../../68000/ C\MDS/ del

*. ./../../68000/ CNDS/ del di r
..l../..168000/ CMDS/ devs
..l../../168000/ C\MDS/ di r
../../../68000/ CVDS/ di skcache
.. 168000/ CMDS/ dsave
.. 168000/ CVDS/ dunp
../ 68000/ CMDS/ echo
../../..168000/ CMDS/ fi xnod
../l../../68000/ CVDS/ f or mat
../..1../68000/ CVDS/ free

* ./../../68000/CVDS/ frestore
*. ./../../68000/ CMDS/ hel p
../../../168000/ CMDS/ i dent
..l../..168000/CVDS/iniz

* ./../../168000/ CVMDS/ ker mi t
*../../../168000/ CVDS/ | i nk
..l../..168000/ CVDS/|i st

* ./../../68000/ CVDS/ | nm

* Ok ok ok
~— — —
~— — —

../ 68000/ CVMDS/ | oad
../ 68000/ CMDS/ makdi r
../ 68000/ CVDS/ ndi r
../ 68000/ CMDS/ nfr ee

—~ — — -
—~ — — -

../../../168000/ CMDS/ 0s9gen
../..1../68000/ CMDS/ p2ini t

../ 68000/ CMDS/ partition
.. 168000/ CVDS/ pd

../ 68000/ CMDS/ pri nt env
../ 68000/ CMDS/ pr ocs

../ 68000/ C\MDS/ r enane

.. 168000/ CMDS/ save

../ 68000/ C\VDS/ set i ne

.. 168000/ CVMDS/ t ar

.. 168000/ CVDS/ t nnde

~ O~~~ — — —~ —~ -
~ O~~~ — — —~ —~

../../../68000/ CNMDS/tsnon

..l..1../168000/ CVDS/ unl i nk

Networking Modules

/R

MICROWARE"

The remaining sections add networking modules to the boot. These
modules can also be loaded from disk using the | oadspf shell scriptin
the SYS directory. The first section is the majority of the hardware

independent system modules used in SoftStax.

For More Information

For more information SoftStax and the NFS Client package, see
Chapter 5.

EE I .

E N S

SPF/ Lancom Net wor ki ng

System MBuf Service

... 1..168020/ CMDS/ BOOTOBJS/ SPF/ sysnbuf
..l..1..168020/ CMDS/ BOOTOBJS/ SPF/ STB/ sysnbuf . stb

Pseudo Keyboard FM Driver/ Descriptors
pkman: Fil e Manager

pkdvr: Driver

pk: pkdvr descriptor

pks: pkdvr (scf) descriptor

NOTE: all required with Tel net and ot her applications needi ng

Pseudo Keyboard fuctionality

./../../68020/ CMDS/ BOOTOBJS/ SPF/ pkman

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ STB/ pknan. st b

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ pkdvr

... 1../68020/ CMDS/ BOOTOBJS/ SPF/ STB/ pkdvr. stb

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ pk

./..1../168020/ CVMDS/ BOOTOBJS/ SPF/ pks

O T T T R R R

SPF/ Lancom FM Dri ver s/ Descriptors

SPF/ Lancom Prot ocol Drivers/Descriptors
spf: SoftStax File Manager

spip: SPF I P driver nodule

i p0: spip descriptor nodul e

sptcp: SPF TCP driver nodul e
tcp0:: sptcp descriptor nodul e
spudp: SPF UDP driver nodul e

udpO: spudp descriptor nodul e
spraw. SPF RAWdriver nodul e

raw0: spraw descriptor nodul e
sproute: SPF Routing driver nodul e
route0: sproute descriptor nodul e

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ spf

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ STBspf . stb

... 1../168020/ CMDS/ BOOTOBJS/ SPF/ spi p

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ STB/ spi p. stb

... 1../168020/ CVMDS/ BOOTOBJS/ SPF/ i pO

/.. 1../68020/ CMDS/ BOOTOBJS/ SPF/ spt cp

... 1../168020/ CVMDS/ BOOTOBJS/ SPF/ STB/ sptcp. stb

... 1../168020/ CVMDS/ BOOTOBJS/ SPF/ t cp0

/.. 1../68020/ CMDS/ BOOTOBJS/ SPF/ spudp

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ STB/ spudp. stb

.1..1../168020/ CVMDS/ BOOTOBJS/ SPF/ udp0

./..1../168020/ CVMDS/ BOOTOBJS/ SPF/ spr aw

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ STB/ spraw. stb

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ r aw0

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ sprout e

E R

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ STB/ sprout e. stb

... 1..168020/ CVDS/ BOOTOBJS/ SPF/ r out €0

Et hernet Support Driver/Descriptor
Required for spl62/spie0 bel ow
spenet: Ethernet protocol driver
enet: spenet descriptor

... 1../168020/ CVDS/ BOOTOBJS/ SPF/ spenet
... 1../168020/ CVDS/ BOOTOBJS/ SPF/ enet

/5?\ MICROWARE"

Networking Configuration Modules

These modules are used to configure your system for the local network
environment and the specific machine modules used to connect the
network. Choose the proper inetdb module.

For More Information
For more information about building an inetdb module for your network,
see Chapter 5.

The example shows adding an ethernet driver to the boot. Other
communication drivers can also be included for SLIP or PPP networking
connections. The inetdb2 module is generally used to specify
information about the particular machine, such as IP addresses and
hostname.

Net wor k speci fi ¢ nodul es

netdb_l ocal : resolve network info frominetdb nodul es
net db_dns: resolve frominetdbs then use DNS

i netdb: local network info nodule

NOTE: often inetdb is made with just network info so
it can be used in all machines. inetdb2 etc. nodul es
are created for nachine specific info.

R

..l..1..168020/ CVDS/ BOOTOBJS/ SPF/ net db_I ocal
..l..1..168020/ CVDS/ BOOTOBJS/ SPF/ net db_dns
.1..1../168020/ CVDS/ BOOTOBJS/ SPF/ i net db

System speci fi ¢ nodul es
i netdb2: Machi ne | ancom confi guration Mdul e

spl62: Ethernet Hardware Driver
spi e0: Ethernet Hardware Descri ptor

EE R

* CMDS/ BOOTOBJ S/ SPF/ i net db2
../ WMEL62/ CVDS/ BOOTOBJ S/ SPF/ sp162
../ WMEL62/ CVDS/ BOOTOBJ S/ SPF/ spi e0

Networking Utilities

The following section adds the SoftStax and LAN Communications Pak
Client utilities to support remote connections with the system. These
include the status program, resident configuration tools, t el net , f t p,
and various daemons. On systems with a disk available, these utilities
are generally not placed in the boot; instead they are loaded from the
CMDS directory automatically by the shell as they are needed.

SPF/ Lancom Utilities

SPF Startup/ Configuration Wilitities
mbinstall: install sysnbuf p2 nodule
ipstart: start spf system

ifconfig: configure spf/lancom devices
route: control/display routing entries
ndbrod: buil d/ nmodi fy | netdb nodul e
netstat: display |ancominformation

i dbdunp: di splay inetdb nodul es

host name: set/di splay system host nanme

R R T T R R

..l../..168020/ CMDS/ nbi nst al |
..l../..168020/ C\MDS/i pstart

* .l../../168020/ CVDS/ i fconfig
.. 168020/ CMDS/ r out e

.. 168020/ CVDS/ ndbnod

.. 168020/ CVDS/ net st at

.. 168020/ CVDS/ i dbdunp
../ 68020/ CMDS/ host nane

—~ — — — —
—~ — — — —

T S N B

SPF Applications

ar p:

boot pd: Bootp server

ftp: Ftp user program

ftpd: FTP daenon (or use inetd)

ftpdc: FTP daenon child (use w ftpd or inetd)
inetd: Master Daenon

pi ng: User "system up?" utility

routed: routing Daenon

tel net: Tel net user program

tel netd: Tel net daenon (or use inetd)

tel netdc: Tel net daenon child (use wtelnetd or inetd)
tftpd: TFTP server daenon

tftpdc: TFTP server daenon child (required wtftpd)
./..1../168020/ CMDS/ ar p

./../../168020/ CNDS/ boot pd

.l..1..168020/ CVDS/ ftp

..l..1../68020/ CMDS/ f t pd
... 1../168020/ CMDS/ ft pdc

./../../168020/ CMDS/ i netd
./../../168020/ CNDS/ pi ng
../68020/ CMDS/ r out ed
./ 68020/ CVDS/ t el net

I
YA
./..1../68020/ CMDS/ t el netd
I

../../68020/ CMDS/ t el netdc
.l..1../168020/ CVDS/tftpd
./../../168020/ CNDS/tftpdc

/R

MICROWARE"

NFS

The last section includes the system modules and utilities used to
support NFS client and NFS server functionality on the OS-9 target
system.

For More Information

Refer to Chapter 5 for more information about creating the descriptors
loaded in these sections.

*

T T T T T R

NFS Client Utilities

nfsc: nfs client daenon (required with nfs FM
mount : mount nfs served devices

rpcdbgen: generate rpcdb nodul e

rpcdunp: display rpcdb contents

nfsstat: nfs status program

rpcinfo: display rpc information fromspecific calls

.. 168020/ CVMDS/ nf sc
.. 168020/ CVDS/ nount
.. 168020/ CVDS/ r pcdbgen
.. 168020/ CMDS/ r pcdunp
.. 168020/ CMDS/ nf sst at

. 168020/ CMDS/ r pci nf o

—~ — — — — —
—~ — — — — —

NFS Server application Mdul es

exportfs: export file systems

portnmap: port mapping daenon (required)

nfsd: nfs daenon (required)

mountd: nount request servicing daenpn

shownpunt: show systens that have mounted locally exported devices

.. 168020/ C\MDS/ exportfs
.. 168020/ CMDS/ por t map
.. 168020/ CVDS/ nf sd
.. 168020/ CVDS/ mount d

. 168020/ CVMDS/ shownount

—~ — — — —
—~ — — — —

/\://& MICROWARE"
Making Boots

There are three basic ways of booting the OS-9 operating system.

The first is to use one of several external sources to load the OS-9 Boot
into memory. The bootp network booter, hard disk, floppy, and tape
booters are examples of external source booters available in the OS-9
PROM.

The second is to use the embedded boot concept where the OS-9
system image is contained in the ROM/FLASH image on the board.
One such image is included in the PROMs provided with BLS
packages.

The third method is to load a boot image via the console port and
ROMBUG. This is the most time consuming method if the image is
loaded via the console port.

/O based Booters

The dO_boot fil e. nake, hO_bootfil e. make, and

vi per _tape_boot fil e. nake makefiles located in the

<port >/ BOOTS directory are used to create OS-9 bootfiles in the
CVDS/ BOOTOBJ S/ BOOTFI LES subdirectory. The same makefile can be
used to i dent the boot you just made by typing the command
os9nake -f=h0_boofil e. make i dent. A bootfile isthe image of
an OS9Boot. Once it is created, there are a variety of methods used to
make the file available to the target machine.

Hard disk boot 0s9gened RBF boot disk
Floppy boot os9gened RBF boot disk
Tape boot t apegened SBF boot tape

Network boot 0S-9, Windows, or UNIX BootP server

Hard Disk Boot

Step 1.

Step 2.

Step 3.

Step 4.

Hard Disk Boot Method 1

Create the boot by modifying the <por t >/ BOOTLI STS/ h0. bl bootlist
file to select the desired modules to be part of your OS9Boot image.

Change into the BOOTS directory and enter os9make
-f=h0_bootfile.make. This creates the bootfile image
<port >/ CVMDS/ BOOTOBJS/ BOOTFI LES/ hO0. bf .

Once the image is built, ftp the file to the target system’s hard disk root
directory. Be sure to use binary mode when ftping the file.

Use 0s9gen on the target machine to “gen” the OS9Boot on the hard
drive using the following command:

0s9gen /h0fmt -eb=<buffer size> h0.bf

Note
<buffer size> should be large enough to hold the entire bootfile.

Note

The use of the format enabled descriptor hOf nt is required in order to
write the sector O (zero) bootrecord information as part of the OS9gen
procedure of creating the OS9Boot on the drive.

Step 1.

Step 2.
Step 3.

4//& MICROWARE"
Hard Disk Boot Method 2

Transfer the files used for creating the boot to the target machine as
described in Chapter 3.

Perform the 0s9gen command on the / hOf nt device.
From the root directory (/h0) execute the following command:
0s9gen /hOfmt -eb=<buffer size> -z=bootlists/h0.bl

Note
Be sure to have a secondary means of booting the target machine in
the event the new boot is flawed and fails to boot the system.

The ROM boot provided in the BLS PROMSs is a viable backup boot
method and allows access to an attached SCSI hard drive with a SCSI
ID of O (zero).

Floppy Boot

Step 1.
Step 2.

Step 3.

Step 4.

From a running OS-9 for 68K machine you can create a floppy disk
boot. The boot er attempts to read a number of OS-9 RBF disk
formats. However, the OS-9 Universal format is recommended since it is
currently the default used by most /dO device descriptors. The following
examples show two methods of making a boot on floppy disk.

Modify the <por t >/ BOOTFI LES/ dO. bl bootlists as desired.

Change to the <por t >/ BOOTS directory and execute the following
command:

make -f=d0_bootfile.make

Ftp the <por t >/ CVDS/ BOOTOBJS/ BOOTFI LES/ dO. bl file to a
running OS-9 machine using binary transfer mode and placing the file
in the / hO/ cnds/ boot obj s/ boot fi | es directory as dO. bf

From the OS-9 machine, on the root directory, execute the following
command:

0s9gen -eb=<buffer size>/d0 CMDS/BOOTOBJS/BOOTFILES/dO.bf

or alternatively, if you have moved the files needed for creating a boot to
the target system, you can enter the command:

0s9gen /d0 -eb=<buffer size> -z=bootlists/d0.bl

In either case, the boot put on the floppy may be for a diskless system,
disk-based system using / dO or / hO as the initial system disk, or a
system using an NFS mounted disk for the system disk.

/5//& MICROWARE"

0OS9Gen Create and Link the OS9Boot File

Syntax
os9gen [<opts>] <devname> {<pat h>}

Description

0s9gen creates and links the OS9Boot file required on any disk from
which OS-9 for 68K is to be bootstrapped. Following are some
examples of how you can use os9gen:

* Make a copy of an existing boot file.
e Add modules to an existing boot file.
e Create an entirely new boot file for a different system.

To use the 0s9gen utility, type os9gen and the name of the device on

which to install the OS9Boot file. 0s9gen creates a working file called

TenpBoot on the device specified. Each file specified on the command
line is opened and copied to the TenpBoot file.

i Note

Only super users (0. n) may use this utility. Also, you can only use
0s9gen on format-enabled devices.

After all input files are copied to TenpBoot , any existing OS9Boot file
on the target device is renamed O dBoot . If an A dBoot file is already
present, 0s9gen deletes it before renaming OS9Boot .

TenpBoot is then renamed OS9Boot . Its starting address and size are
linked in the disk’s identification sector (LSN 0) for use by the OS-9
bootstrap firmware.

Options

-? Display the options, function, and
command syntax of os9gen.

- b=<nun®» Assign <nunmk of memory for os9gen.
Default memory size is 4K.

-e Extended Boot. Allows you to use large
(greater than 64K) and/or
non-contiguous files.

Note: Bootstram ROMS must support
this feature.

-gq=<fil e> Quick Boot. Set sector zero pointing to
<file>.

-r Remove the pointer to the boot file. This
file is not deleted.

- X Search the execution directory for
pathlists.

-Z Read the file names from standard input.

-z=<file> Read the file names from <f i | e>.

If your boot file is non-contiguous or larger than 64KB, use the - e

option.

Note

Your bootstrap ROMs must support this feature. If they do not, you

should not use this option.

If you use the - z option, os9gen first uses the files specified on the
command line and then the file names from its standard input, or from
the specified pathlist, one pathlist per line. If the names are entered
manually, no prompts are given and the end-of-file key (usually
<escape>) is used to terminate input.

/5//& MICROWARE"

To determine what modules are necessary for your boot file, use the
I dent utility with the OS9Boot file that came with your system.

The - g option updates information in the disk’s Identification Sector by
directing it to point to a file already contained in the root directory of the
specified device.

The - g option is useful when restoring the A dBoot file as the valid
boot on the disk. 0s9gen renames the specified file to be OS9Boot and
saves the current boot as described previously.

The - r option removes the pointer to the boot file but does not delete
the file. This is useful if you delete the bootfile from your disk (using the
del command). Deleting the bootfile from the file structure does not
remove the bootfile pointers from the disk’s Identification Sector. You
can also use it to make a disk non-bootable without deleting the actual
bootfile.

Examples

This command manually installs a boot file on device / d1, which is an
exact copy of the OS9Boot file on device / dO.

$ o0s9gen /d1 /dO/ os9boot

The following three methods manually install a boot file on device / d1.
The boot file on / d1 is a copy of the OS9Boot file on device / dO with
the addition of modules stored in the files / dO/ t ape. dri ver and
/d2/ vi deo. driver:

Manual Bootfile Installation Method 1
$ os9gen /dl /dO/ os9boot /dO/tape.driver /d2/video.driver

Manual Bootfile Installation Method 2

$ os9gen /dl /dO/os9boot -z
/ dO/ t ape. dri ver

/ d2/ vi deo. dri ver

[ESCAPE]

Manual Bootfile Installation Method 3

$ os9gen /dl -z
/ d0/ os9boot

/ dO/ t ape. dri ver
/ d2/ vi deo. dri ver
[ESCAPE]

You can automatically install a boot file by building a bootlist file and
using the - z option to either redirect os9gen standard input or use the
specified file as input:

$ build /dO/bootli st Create file bootlist
? /d0/ os9boot Enter first file nane
? /dO/tape.driver Enter second file nane
? /d2/video.driver Enter third file nane
? * V1.2 of video driver
* Conment |ine
? [RETURN] Term nate build
$ os9gen /dl -z </dO/bootli st Redi rects standard i nput
$ os9gen /d1 -z=/d0/bootli st Reads i nput from pathli st
Note

0s9gen treats any input line preceded by an asterisk (*) as a
comment.

The following command makes the A dBoot file the current boot and
saves the current OS9Boot file as A dBoot :

$ os9gen /dl -qg=ol dboot

Note
0s9gen is an OS-9 hosted utility.

/\://& MICROWARE"
Tape Booting

An OS-9 for 68K machine can be used to create a tape boot. The tape
boot can optionally initialize a RAM disk from an image of the disk
created prior to creating the tape. The t apegen utility is used to create
the boot tape and the t apest ar t utility is used to initialize the RAM
disk from the tape. Thei nit _tape i nit module uses this method.

Tape startup Sequence

The tape booting procedure operates in a manner similar to normal disk
booting. The t apeboot code in the supplied ROMs reads a header
block (equivalent to Sector O of a disk) from the tape. This block
contains the location and size of the bootstrap file on the tape. It allows
the booting code to locate and read the bootstrap file into system
memory.

The format of the boot tape header block also allows the specification of
additional files on the tape for application-specific purposes. In the
standard distribution media, this feature allows the RAM di sk i mage
to be stored on tape. When the system is booted, an application
program is executed. This application program reads the RAM di sk

I mage from tape and writes it into the RAM disk itself.

Supplied Utilities

Two utility programs are supplied on the distribution media to support
the concepts described above. These utilities are t apegen and
tapestart.

The t apegen utility creates the bootable tape. t apegen is a standard
utility performing a function similar to the os9gen utility. Both utilities
place the bootstrap file onto the media and mark the media
identification block with information regarding the bootstrap file. In
addition, t apegen can optionally place initialized data on the tape for
application-specific purposes.

Step 1.

Step 2.
Step 3.
Step 4.
Step 5.

To use the initialized data feature, use the following procedure:

Create a RAM disk descriptor that sets the RAM disk size as required
on the target machine.

Load the descriptor.

Initialize the descriptor with i ni z.

Fill the RAM disk with the files desired on the target machine.
Save the raw image of the RAM disk to tape.

Using this method, st ar t up script files, t er ncap, and er r nsg files
are available on a target where there is no other disk installed. The - i
option of t apegen is then used to point to the RAM disk on the host.

Note

The target boot must contain the ram driver and a descriptor with a
device size equal to that of the initialized RAM disk image on tape.
When edition #24 or greater of the RAM driver is used with the target
boot, the descriptor must also be format enabled as well.

/5//& MICROWARE"

tapegen Put Files on Tape

Syntax
t apegen [<opts>] <fil enane> <fil enanme>

Description

The t apegen utility creates the bootable tape. t apegen isa
standard utility performing a function similar to the os9gen utility. Both
utilities place the bootstrap file onto the media and mark the media
identification block with information regarding the bootstrap file. In
addition, t apegen can optionally place initialized data on the tape for
application-specific purposes.

Options

-7? Displays the options, function, and
command syntax of t apegen.

- b=<bootfil e> Installs an OS-9 boot file.

- bz Reads boot module names from
standard input.

-bz=<boot | i st > Reads boot module names from the
specified bootlist file.

-C Checks and displays header information.

- d=<dev> Specifies the tape device name. The
default is / nt O.

-0 Takes the tape drive off-line when
finished.

-t =<t ar get > Specifies the name of the target system.

-i=<file> Installs an initialized data file on the

tape. This is usually a RAM disk image.
- v=<vol une> Specifies the name of the tape volume.
-z Reads filenames from standard input.

-z=<file> Reads filenames from the specified file.

Examples

The following example makes a bootable tape. The disk image is
derived from the /dd device.

$ tapegen -b=0S9Boot.tape -i=/dd@
“-v=0S-9/68K Boot Tape” -t=MySystem

This example makes a bootable tape with no initialized data file. The
header information is displayed after writing the tape.

$ tapegen -b=0S9Boot.h0 -c

i Note

tapegen is an OS-9 hosted utility.

/5//& MICROWARE"

t apestart Start System from Tape

Syntax

tapestart [<opts>] [<device nane>] [<opts>]

Description

The t apest art utility supplied on the distribution media is an
application-specific program used to initialize the RAM-disk contents.
For tape booting configurations, t apest art allows the RAM disk to be
fully initialized prior to forking the standard SysGo module.

Function

t apest art reads the header block from the tape, determines the
position and size of the initialized data file, and copies this data to the
specified device.

Note

When creating boot tapes with initialized data files and using the
supplied t apest art utility, the size of the initialized data file must be
the same as the size of the device to which the data is being written.

To use the t apest art utility, type t apest art followed by any desired
options.

Options

<devi ce nane> Specifies the RBF device to initialize.
This defaults to whatever is specified in
the i ni t module.

-7? Displays the options, function, and
command syntax of t apest art.

- d=<t devnane> Specifies the tape device name. The
defaultis / nt O.

-0 Forces the tape drive off-line when
finished.
Note: On some drives, this ejects the
tape.

Examples

The following example writes the initialized data file on / nt O to the
system’s default device.

$ tapestart
This example writes the initialized data file on/ nmt 2 to/ r 0.
$ tapestart -d=/nt2 /r0

/\://& MICROWARE"
BootP Booting

The target system can be booted from a Windows or UNIX hosted
BootP server if available. The BLS and OEM packages also contain an
0S-9 for 68K Bootstrap Protocol Server (BootP) that enables you to
create a BootP server for your target system from a separate disk
based OS-9 system.

For More Information

Refer to the Using LAN Communications Pak manual for information
about the OS-9 BootP server and its installation.

Creating the Boot

Use an existing makefile (for example BOOTS\ hO_boot fi | e. make)
and the corresponding bootlist file (for example BOOTLI STS\ h0. bl) to
create an appropriate boot for your target system. You can either make
changes directly to an existing bootlist file and then use the
corresponding makefile to build your bootfile, or you can make a copy of
these files (for example copy to boot p_boot fi | e. nake/ boot p. bl)
and then make your changes to the new files.

i Note

If you choose to create new makefile and/or bootlist files, be sure to
update the following definitions in the new makefile:

 MAKER (new makefile name)
e COFI LE (new bootfile name)

e FI LES (new bootlist name)

Also update the following definition in BOOTS\ nmakefi | e:

* TRGTS (add new makefile name)

Once you have created an appropriate boot, move the bootfile to the
directory used by your BootP server.

i Note

For TFTP booting, please refer to the Customizing ROM images
section.

Booting the boot

After resetting the target system, select the ie boot menu item to boot
boards such as the MVME162, MVME167, MVME172, and MVME177
using the 182596 Ethernet controller. If automatic booting is desired, the
sequenced order of booters should be entered and the r onbug boot
menu disabled through the use of the r econf i g command.

In addition, if the debugger is also disabled, upon power up or reset, the
system continues trying the backup sequence forever. Booters may be
specified more than once in the booter preference sequence.

/5//& MICROWARE"

Customizing ROM images

Making new or additional ROMs is another method used to modify the
boot on the target board. For developers of ROMed target systems, this
is usually done once the code has been debugged and proven
functional. This is a good way for BLS users to provide an always
present backup boot when the primary boot method is from an
attached hard disk.

Modifying the ROM Bootfile

Step 1.

Step 2.

Step 3.

The ROM Bootfile uses the r om bl bootlist in your board’s
<port >/ BOOTLI STS directory to select files/modules for inclusion in
the boot image.

Makefiles for rebuilding the ROM boot are located in the ROM_CBOOT
directory of your board’s port directory. The makefiles create merged
components in the CVDS/ BOOTOBJ S/ NOBUG or

CVDS/ BOOTOBJ S/ ROVBUG subdirectories of your board’s port directory
depending on whether or not you choose to include rombug in your
ROM image. The example concentrates on the ROMBUG version.

Edit the BOOTLI STS/ r om bl file to add or change the modules to
include in your boot. Adjust the size of your boot to the available size of
the PROM/FLASH memory on your board. The ROMBUG section of
the PROM will use the first 128k of ROM space. Therefore, on a board
with 1 Meg of ROM, there will be $E0000 / #917504 bytes of ROM
available for the boot.

To determine the size of your boot, change to the root of your board’s
port directory (MNOS/ OS9/ 68040/ PORTS/ MWMEL62 for our example
162 system).

Use the command os9merge -z=BOOTLISTS/rom.bl >boot.tmp to
create a boot.

Step 4.

Step 5.

Look at the size of the file using the dir command.

You can also use os9ident -q -z=BOOTLISTS/rom.bl to quickly identify
modules within your boot.

Once you are satisfied with the revised bootlists, change to the
ROM_CBQOOT directory and rebuild the ROM image.

os9make -f=rombug.make causes the ROMBUG version of the ROM
image to be rebuilt and placed in the
<PCORT>/ CVDS/ BOOTOBJ S/ ROVBUd r onbugger file.

Therom boot fi | e. make makefile calls the padrom utility to pad the
size of the bootfile to a known size. Adjust the makefile if you wish to
pad to a size different than $EO000 bytes.

The makefile rom_booters generally builds the ROMBUG section of
the ROM image and padroms that section to 128k. The two pieces are
then combined by r onbug. make to build the 1 meg ROM image used
in the PROMS provided with the BLS.

The C based rombooter used on the MVME boards will find any number
of modules contiguous with the OS-9 kernel, which must be the first
module in any boot. If a board contains 4 meg of FLASH memory, the
booter would allow a boot of up to 4 meg minus 128k for ROMBUG. If
the FLASH memory was in two separate, noncontiguous banks, the first
bank would set the maximum embedded boot size. However, the
system’s init module could be modified to request that the OS-9 kernel
search the second FLASH bank for additional modules after the kernel
has taken control of the system.

For More Information
Refer to Enhanced OS-9 for 68K MVME Board Guide for information
about the layout of each CPU’'s RomBug ROMs.

/5//& MICROWARE"

initext File

Step 1.

Step 2.
Step 3.

Step 4.

To customize the ROM’s initial startup code, Microware provides a file
calledi ni t ext. a (initialization extension). This file enables BLS
users to create a bootstrap ROM performing special initialization of the
system during the initial startup of the bootstrap process, without
requiring you to customize and re-make the core of the distributed
bootstrap ROMs.

The majority of users do not need to modify the | ni t ext code installed
in their ROMs. A typical application for this code is initializing custom
hardware that would otherwise interfere with the booting process. For
example, hardware that asserts an interrupt to the CPU on power-up
and must be accessed to clear the interrupt.

The modification of the i ni t ext code is optional. If you need to modify
the code, take the following steps to include the modified code in the
ROMs:

Examine the supplied i ni t ext . a file to gain an insight into when the
code is called and what functions you can perform. This is an actual file
you can modify according to your requirements.

Modify i ni t ext . a to meet your requirements.

Re-make your customized version using one of the make commands. If
your make changes to other modules to be contained in the ROMs,
performing a full make may be required to update those modules. In the
ROM_CBQOOT directory you can simply type os9make or you can run
only the version you prefer utilizing one of the following commands.

os9make -f=rom.make
os9make -f=rombug.make

Make a new set of boot ROMs or program into the board’s FLASH
memory if available.

For More Information

See the Enhanced OS-9 for 68K MVME Board Guide for more
information.

i Note

OEM package customers have many more options for customizing
ROM images.

/5?\ MICROWARE"

Download Booting

Step 1.

Step 2.

This method is used most often during the development phase of a
project. It requires operator intervention to load the boot code at the
appropriate memory location and time. The sample session provided

below shows downloading S-Records using RomBug’s download
facility.

For More Information

For more information on the RomBug download command see the
Using RomBug manual.

Once the memory for the M boot has been allocated, the boot may also
be moved into place by using another CPU board in the same
backplane to copy the code into place.

At power up or after reset, type g <Return> at the r onbug debugger
prompt (assuming it is enabled) to receive the boot menu.

Select the Boot Manually Loaded Bootfile Image option by typing ml

<Return>. You are then prompted for the size of the boot file to be
downloaded.

Step 3. Enter the size of the bootfile. The booter allocates enough memory to
hold the boot and responds with the beginning address of the allocated
memory in the yes/no/quit question displayed below.

BOOTI NG PROCEDURES AVAI LABLE --------------- <l NPUT>
Boot from SCSI (SCCS) hard drive ------------ <hs
Boot from Viper tape drive ----------------- <VsS>
Boot from Teac SCSI floppy drive ----------- <f s>
Boot from BOOTP i 82596 LANC ---------------- <ie>
Boot from BOOTP backpl ane ------------------ <bp>
Boot froma non-volatile (Static) RAM disk - <sd>
Load Bootfile fromROM ---------cmmcmmmnon- <lr>
Boot fromROM -------cmmmm e - <r o>
Boot Manually Loaded Bootfile Inmage -------- <m >
Reconfigure the boot system---------------- <rc>
Restart the system------------------------- <g>

Sel ect a boot method fromthe above nenu: mi<return>
Enter |l oadfile size<cr>: 85442<return>

Is the loadfile inmage ready at 0x8310:
(<yes>/ <no>/<quit>)?

Step 4. Press the abort button on the CPU to return to the debugger.

<Abort ed>

dn: 00000000 00000000 00000000 00000000 00000005 00000001 FFAOO9FE 00007000
an: FFA19076 0000422A FFA18400 FFF45004 00008010 00006FFO0 00000010 O0006F3A
pc: FFA021A0 sr:2704 (--Sl-7--Z--)t: OFF nmsp: FFEL0000 usp: 00000010 ~isp”
OxFFA021A0 >67F8 beqg.b OxFFA0219A

RonBug:

Step 5. Set.r7 asthe default relocation register
RonBug: @<ret>

Step 6. Load the download memory address into . r 7
RonmBug: .r7 8310<ret>

Step 7. Set a download I/O delay value of 20 in . dO
RonmBug: .dO 20<ret>

Step 8.

Step 9.

Step 10.

/5//& MICROWARE"

Execute the dl (download) command.

RonBug: dl <ret>
00008400
00008600
00008800

At this point, start the download from the host system. The download
starts and displays the address at 512 byte intervals until the final
S-record has been received.

0001C800
0001CA00
0001CC00
0001CEOO
0001D000
| oad done

Type g <Return> to resume at the download booter’s prompt. Pressing
<Return> reprints the prompt. Typing y <Return> causes the
download booter to start the code that was downloaded to bring up the
system.

RonBug: g<return>

<ret>

(<yes>/ <no>/ <quit>)? yes<return>
A valid OS-9 bootfile was found.

-t -np

*

* 0S-9/68000 - Version 3.0

* Copyright 1984, 1993 by M croware Systens Corporation
*

*

The conmands in this file are highly system dependent and
shoul d

* be nodi fied by the user.

*

setine <>>>/term ;* start system cl ock

yy/ mmi dd hh: mm ss [amnm pn

Ti me:

i Note

This booter can also be used in conjunction with other CPU cards on
the VME Bus to load the image at the allocated address rather than
downloading the boot image via ROMBUG.

/\://& MICROWARE"
ROM Customization (OEM Package)

The Embedded OS-9 for 68k (OEM) Package includes the ability to
customize the booters, initial memory search lists, and rebuild
additional sections of the CBOOT ROMs.

For More Information
Refer to the OEM Installation manual for more information.

Chapter 5: Configuring Your System

for Networking

This chapter provides pointers to the appropriate OS-9 documentation
for configuring your OS-9 system for networking:

Using LAN Communications Pak (Chapter 2 and Appendix A).

Chapter 2: LAN Communications Pak Overview provides an
overview of the network modules.

Appendix A: Configuring LAN Communications Pak describes
the network configuration that may need to occur as well as a
walk-through of the LAN Communications portion of the bootlist file.

Using Network File System/Remote Procedure Call
(Appendix A).
Appendix A: Getting Started With Network File System/Remote

Procedure Call provides an overview, configuration description, and
bootlist walk-through of the NFS modules.

Note

To view these documents, select Vi ew Docunent at i on from the
Enhanced OS-9 for 68K CD.

M MICROWARE"

5 Configuring Your System for Networking Aﬂ MICROWARE"

100 0OS-9 for 68K Processors BLS Reference

Chapter 6: Developing Your System in
Hawk

This chapter provides pointers to the appropriate OS-9 documentation
for using the Hawk Integrated Development Environment for your OS-9
project:

» Getting Started with Hawk (includes an example Hawk project).

» Using Hawk (includes a description of the Hawk interface and
instructions for debugging over a SLIP connection).

i Note

To view these documents, select Vi ew Document at i on from the
Enhanced OS-9 for 68K CD.

M MICROWARE"

6 Developing Your System in Hawk Aﬂ MICROWARE"

102 0OS-9 for 68K Processors BLS Reference

Appendix A: SCSI Information

This appendix includes the following topics:
» Overview

» SCSI Software Configurations — Implementation Notes

M MICROWARE"

/\://& MICROWARE"
Overview

This appendix provides information regarding SCSI software and
hardware configurations. The first section contains details about:

« SCSIIDs
 Therbsccs and r bvccs device drivers

« The differences between r bsccs and r bvccs device descriptors
and other important device descriptor fields

« Howto convertarbsccs drivetoarbvccs drive

The second section deals with the configuration of SCSI peripherals. It
contains configuration information for:

* Embedded SCSI hard disk support
« Embedded SCSI floppy disk support
« Embedded SCSI tape support

SCSI Software Configurations —
Implementation Notes

SCSI IDs

The default descriptors provided with the Board Support Packages map
devices to specific SCSI IDs. Take care to set the device IDs on each of
the devices. Failure to set the IDs correctly is the most common
problem in the initial setup. The following are valid SCSI IDs:

Table A-1 Valid SCSI IDs

SCSIID Type Peripheral Device

7 Initiator None (host CPU) or SCSI host adaptor
6 Target TEAC FD235 HS or JS (FC-1 Controller)
embedded SCSI floppy drive.

LUN 0-3 are available but must be the same type
(HS or JS). LUNO is the default drive for booting.

5 Target Default value for second tape drive.

4 Target Primary Tape Device (Archive 2150S, 2060S
Viper Cartridge tape, or TEAC MT-2ST Cassette
tape).

3 Target Reserved.

2 Target Reserved.

/5?\ MICROWARE"

Table A-1 Valid SCSI IDs (continued)

SCSIID Type Peripheral Device

1 Target Default value for second CCS hard drive.
0 Target Primary Disk Device (usually CCS Winchester
drive).

i Note

The OS-9 for 68K SCSI implementation currently supports only single
initiator mode of operation. Placing additional initiators on the bus could
be fatal to the system

Device Drivers: rbsccs/rbvccs

The current version of OS-9 for 68K RBF supports logical sector sizes
other than 256 bytes. In the past, due to device constraints, if the
physical sector size of the device was other than 256 bytes, the device
driver (r bsccs) had to manage the logical to physical mapping of the
drive. The newer device driver (r bvccs) is now the only driver provided
with this version of OS-9 for 68K. This driver assumes the
logical/physical mapping of the drive is 1:1 at the sector size determined
from the SCSI drive during initialization. The implications of this,
especially the effects on the device descriptors, are explained below.

i Note

For those systems still using RBSCCS formatted disks, the RBSCCS
driver currently in use on the 3.X systems can be used under Enhanced
0S-9 for 68K. Any drives being freshly formatted should use r bvccs.

i Note

rbsccs and r bvccs are not directly compatible. It is not sufficient to
just change the driver name to make the change. If the drive was
created under r bsccs with a physical sector size other than 256 bytes,
you must reformat the drive before using it with r bvccs. el ow

r bvccs drives allow only a single LOGICAL UNIT per DEVICE ID. The
device address should be:

Device Address + SCSI ID

The provided descriptor generators take this address into account. This
is important if you use the noded utility to change the SCSI IDs in a
descriptor. This method of providing unique addresses allows multiple
processes to access separate drives simultaneously, without locking. It
results in a significant performance increase for SCSI disconnect
capable systems.

/5//& MICROWARE"

Differences Between rbsccs and rbvccs Device

Descriptors

While r bsccs is not in the Enhanced OS-9 for 68K package, the
differences between r bsccs and r bvccs device descriptors are

summarized here.

rbsccs: Logical sector size is always 256.
Sector size field = 0: Assume physical sector size is 256.
Sector size field = n: Assume physical sector size is n.

rbvccs: Sets logical and physical sector size to same value.
Sector size field = 0: Use current device sector size.
Sector size field = n: Set sector size to n, must be a format
enabled descriptor (hOf nt).

The r bvccs descriptors have the sector size set at 0, indicating the
drive should be queried to determine the sector size and the driver uses
the current sector size of the drive.

Other Important Device Descriptor Fields

Other important device descriptor fields are summarized here.

Drive Number:

Controller ID:

Use this field to assign a unique
LOGICAL DRIVE NUMBER for each
disk device the driver controls. If the
driver supports multiple LOGICAL
UNITS (for example, r bt eac and

r bsccs), this number should be unique
for each unit on the controller. Set this
field to O for drivers supporting a single
LOGICAL UNIT per drive (for example,
r bvccs). The number selects which
drive table entry the driver uses for the
drive.

Indicates the actual hardware address of
the SCSI device on the bus. noded
refers to this field as SCSI controller ID.

Logical Unit: Indicates the actual LUN of the device
on the controller device. It has nothing to
do with the drive number field. This field
is set to 0 for most embedded controller
drives.

SCSI Options: Controls the options used on the SCSI
bus. Set the appropriate bit(s) to turn on
the options as follows:

Bit 0 Disconnect allowed.

Bit1 Enable target mode (not currently
supported).

Bit 2 Synchronous transfers.
Bit 3 Enable SCSI parity (not normally used).

Bits 4 - 31 Reserved for future use by
Microware.

i Note

Use the SCSI options bits 0 and 2 with care. In general, only enable the
synchronous field for drives explicitly stated as synchronous capable.
The same is true for the disconnect bit. Some devices do not support
disconnect. Consult the device manuals prior to enabling these options.
(Default descriptors have these options disabled.)

/5//& MICROWARE"

Converting a rbsccs Drive for Use with rbvccs

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.

If the drive was formatted under r bsccs with a sector size of 256,
r bvccs and its associated descriptor should work; no conversion is
needed.

If the drive was formatted under r bsccs with a sector size other than
256, use the following steps to convert the drive:

Back up the drive. Because you are going to format the drive, all
information on it is lost. You can use any method using standard utilities
for this operation (for example, f save). You can use a second
Winchester for this purpose; rbvccs and r bsccs can be used
simultaneously in the system.

Create a descriptor for the device being converted. You can either
modify syst ype. d and use the descriptor generator or copy the
supplied descriptor and make the necessary changes. Remember the
hO and hOf nt descriptors must agree.

Load r bvccs, the new descriptor, and any required programs into
memory.

Format the drive you are converting, using the new descriptor and
driver.

Restore the drive’s contents (for example, f r est or e).

Install a new boot file containing the r bvccs driver and the new
hO. vccs descriptor.

i Note

Under the current release of OS-9 for 68K, when sector sizes are
changed on some devices, the correct capacity in sectors is not
available until after the drive has been physically formatted. When
format reports the number of sectors, make a quick check of them. If
you find an overly large disparity in the capacity, format the drive a
second time at the same sector size. This sets up the drive with the
correct capacity. Also, remember many drives are specified with
unformatted capacity. The formatted capacity is always somewhat less
than the unformatted capacity. It is common for a drive formatted at 256
bytes/sector to have less formatted capacity than the same drive
formatted at 512 bytes/sector. The formatted capacity of a given drive
depends on many factors; consult the individual drive manuals if
guestions arise.

Embedded SCSI Hard Disk Support

Software Driver: rbvccs

Controller/Driver: In general, any SCSI embedded drive supporting
CCS Rev 4B. Examples include:

Imprimis Wren 1ll, 1V, V, VI, and VII
Imprimis Swift Series

Seagate 225N, 138N, 157N

Syquest SQ555 (44 megabyte removable)

SCSI ID: 0
Drive LUN: 0 (fixed)
Host Parity: Disabled

/5?\ MICROWARE"

i Note

r bsccs was the deblocking version of the driver. It supported a logical
sector size of 256 bytes and variable physical sector sizes (as defined
in the device descriptor’s sector size field). This driver was mainly
provided for existing installations that have initialized the media under
the pre-Version 2.4 OS-9 for 68K RBF.

r bvccs is the only supported driver for new installations. It supports
variable logical/physical sector sizes on a one-to-one basis. You should
use this driver with Version 2.4 OS-9 for 68K or greater RBF.

i Note

Removable media devices must have the removable hard disk flag

set in the device descriptor. If you use removable media and this flag is
not set, RBF and the driver may not detect when the media platter has
been changed. This may result in damage to the media’s file structure.

Embedded SCSI Floppy Disk Support

Software Driver: r bt eac

Controller/Driver: TEAC FD-235 HS/JS

SCSI ID: 6

Drive LUN: O (optional drives may be connected as LUNs 1 - 3)

Host Parity: Disabled

i Note

The HS version of the drive supports double density (1 Megabyte
unformatted capacity - DD) and high-density (2 Megabyte unformatted
capacity - HD) media. The JS version of the drive supports DD and HD
formats, as well as extra density (4 Megabyte unformatted - ED) media.

Embedded SCSI Tape Support

Software Driver: sbvi per, sbt eac, shgi ga
Controller/Driver: Archive QIC tape drives (sbvi per)
TEAC MT-2ST/N50 and N60 tape cassette
(sbt eac)
Exabyte 8200 and 8mm tape cassettes
(sbgi ga)
SCSI ID: 4
Drive LUN: 0 (fixed)
Host Parity: Disabled

Module Locations

Drivers are found in MADS/ OS9/ 68000/ CVDS/ BOOTOBJS.

Descriptors are found in MADS/ OS9/ 68020/ PORTS/ <cpu>/
CVDS/ BOOTOBJ S/ <subdi r ect or y>.

/5?\ MICROWARE"

Table A-2 Module Locations

Subdirectory for

Drive Type Driver Name Descriptors
Hard disk drive rbvccs vces

Hard disk rbsccs sccs
Embedded floppy drive r bt eac t eacf ci
Cartridge/DAT tape drive rbvi per Vi per
Cassette tape drive sbt eac t eacf ci
8mm tape drive sggi ga exabyt e

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

Index

Numerics
68000 51
directory 12
68020 12, 51
directory 12
68030 12
68040
cmds 12
68060
cmds 12, 13
directory 12
68332 12
68340 12
68349
directory 12
8mm tape driver name 114

add

SBF to boot 65
AM7990

ethernet chip 89
atomic kernel 58, 60
automatic boot 89

Board Support Package (BSP) 7
boot

automatic 89

diskless system 67

test 29

ABCDEFGHIJKLMNOPQRSTUVWXY Z

BOOTFILES 74
bootlist file 56
BOOTLISTS 14, 51
BOOTOBJS 56
BOOTP 67
BootP 74
Bootstrap file
Build and link 78
bootstrap ROM 79
BSP
customization 10
installation kit contents 9
installing 16
buddy allocator 57
bus snooping(Snoopxxx) 60

cartridge/dat tape driver name 114
cassette tape driver name 114
change
SCSI ID in descriptor 107
cio 67
clock module 61
CMDS 51, 56, 71
cmds
68020, 68030, 68040 12
68060 12, 13
colored memory allocator 57
configure
CPU board 20
convert
rbsccs for use with rbvecs 110
CPU
board
caching 60
configuration sample 23
configure 20
CPU32 51
CRC
validate 56

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

create
bootable tape 84
boots 14
0S-9 bootfiles 74
csl 67
customize
Disk-Based version of a BSP 50
ROM boot 90

dO_bootfile.make 74
daemons
for remote connections to system 71
date and time 61
default relocation register 95
DEFS
directory 14
defsfile 52
descriptors 63
development
kernel 58
device
descriptor fields 108
ID 105
DOS
cross development 11
directory 11
download
booting 94
drivers 63

edit
bootlist file 56
Embedded
floppy driver name 114
SCSi floppy drive 105
SCSiI foppy disk support 112

ABCDEFGHIJKLMNOPQRSTUVWXY Z

example
boot modules 51
list of makefiles with extended BSP 53
0s9gen 80
reconfiguration session 23
tapegen 85
tapestart 87
Extended
bootlist file 56
extension modules 15

Files

Build and link bootstrap file 78
flash memory

RomBug installation 20
floppy

(d0) 59

boot 77
format 111
ftp 71

hO_bootfile.make 74
hard disk

(h0) 59

boot 76

driver name 114
hardware-specific code 13

182596 ethernet controller 89
init 66
modules 59
InitExt 92
initext.a 92
initialize

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

RAM disk 82
install
kit

contents 9

steps for V3.0 16
interrupt generator 61
IO directory 14
IOMAN 58

kernel
bootlist 57

load boot code 94
loadisp shell script 68

MACROS
directory 15
make
boots 74
new boot 56
makefile 53, 74
templates 11
MAKETEMPL
directory 11
math 67
math881 67
mdir 32
memory allocator 57
mfree 32
moded 107
modify
init module 59
Motorola
MCB8xxx 12

ABCDEFGHIJKLMNOPQRSTUVWXY Z

MVME147 50, 89

supported target 8
MVME162

supported target 8
MVME167

supported target 8
MVMEL177

supported target 8
MVME320 63
MVME327 63
MWOS

directory structure 10

object code 11
0S-9
create bootfiles 74
object code 11
server 74
OS9 directory 11
0S-9000
directories 11
0S9000 directory 11
OS9Boot 56, 78
os9gen 56, 74, 76
utility 78

P2

modules 60
P2 module

initialization list 60
parallel

port 62
periodic interrupt generator 61
pipe

module 61
Pipeman 61

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

PORTS 13
directory 10
primary
disk device 106
tape device 105
procs 32

RAM
disk 63
disk image 82
initialize 82
Random Block File manager (RBF) 63
RBF 63
boot disk 74
rbsccs 108, 110, 114
logical sector size 108
sector size field 108
rbteac 114
rbvccs 106, 108, 110, 111, 114
logical sector size 108
sector size field 108
rbviper 114
rebuild
boot ROM components 15
RELS 52
removable hard disk flag 112
ROM
bootstrap 79
customize boot 90
directory 15
images 55
RomBug
PROM 9
riclock 61

SBF

ABCDEFGHIJKLMNOPQRSTUVWXY Z

boot tape 74
sbteac 114
SCF 61
SCSI
configuration 104
device
actual hardware address 108
embedded floppy drive 105
hard disk support
embedded 111
IDs 105
load host adapter driver 63
peripherals 104
sector size 106, 111
serial
ports 61
Serial Character File manager (SCF) 61
set
device ID 105
sggiga 114
shell 66
space protection (SSM) 60
SRC
directory 11, 13
S-record 96
start
system from tape 86
SYS 68
directory 15
sysgo 66
SYSMODS
directory 15
system
intialization 92
time-slicing 61
systype.d 52, 59

tape
boot 82

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

manager 65

primary device SCSIID 105
tapeboot 82
tapegen 74, 82, 84
tapestart 82, 86
target

supported 8
TEACa

FD235 105
telnet 71
Test Boot 29
ticker 61
tkxxx module 61

Ultra C
libraries 67
UNIX
BootP server 74
utilities
for use with board 51
0s9gen 76
tapegen 84
tapestart 86

view

contents of init module 59
viper_tape_bootfile.make 74
VME

bus peripheral boards 56

serial board 62

A BCDEFGHIJKLMNOPQRSTUVWXYZ

124 0S-9 for 68K Processors BLS Reference

Product Discrepancy Report

To: Microware Customer Support
FAX: 515-224-1352
From:

Company:

Phone:

Fax: Email:

Product Name:
Description of Problem:

Host Platform

Target Platform

M MICROWARE"

	HOME
	OS-9 for 68K Processors BLS Reference
	Table of Contents
	Chapter 1: Introduction
	OS-9 for 68K Targets Supported
	Software Packages

	BLS Installation Kit Contents
	MWOS Development Directory Structure
	MWOS Subdirectories

	General Installation Procedure

	Chapter 2: Hardware Configuration and the Initial Boot
	Target CPU Board Configuration
	Sample Reconfiguration Session for MVME boards
	Hardware Reconfiguration
	Board Memory Size
	Board ID
	Group ID
	VME Interrupt Levels
	VME Slave Memory
	VME Slave Memory Address
	SCSI Reset on ROMBUG startup

	Boot System Reconfiguration

	Initial OS-9 Test Boot

	Chapter 3: Optional Hard Disk and Initial Networking Startup
	Connecting A SCSI Hard Disk
	Manual Installation Information
	Formatting 4 Gigabyte or Smaller Drives
	Formatting and Partitioning Drives Larger than 4 Gigabytes

	Network Configuration
	Establishing the Hard Disk Root Directory
	Prepare Image on Host machine
	Transfer Image to Target Machine

	Chapter 4: Boot and ROM Customizing
	Overview
	PORTS Directory Organization
	BLS Makefiles
	Modifying Bootlists
	Init Module
	Customization Modules
	Clock Modules
	SCF and Pipeman
	RBF
	SBF
	Initial System Process
	Additional Modules and Utilities
	Networking Modules
	Networking Configuration Modules
	Networking Utilities
	NFS

	Making Boots
	I/O based Booters
	Hard Disk Boot
	Hard Disk Boot Method 1
	Hard Disk Boot Method 2

	Floppy Boot
	OS9Gen
	Manual Bootfile Installation Method 1
	Manual Bootfile Installation Method 2
	Manual Bootfile Installation Method 3

	Tape Booting
	Tape startup Sequence
	Supplied Utilities
	tapegen
	tapestart

	BootP Booting
	Creating the Boot
	Booting the boot

	Customizing ROM images
	Modifying the ROM Bootfile
	initext File

	Download Booting
	ROM Customization (OEM Package)

	Chapter 5: Configuring Your System for Networking
	Chapter 6: Developing Your System in Hawk
	Appendix A: SCSI Information
	Overview
	SCSI Software Configurations — Implementation Notes
	SCSI IDs
	Device Drivers: rbsccs/rbvccs
	Differences Between rbsccs and rbvccs Device Descriptors
	Other Important Device Descriptor Fields
	Converting a rbsccs Drive for Use with rbvccs
	Embedded SCSI Hard Disk Support
	Embedded SCSI Floppy Disk Support
	Embedded SCSI Tape Support
	Module Locations

	Index
	Product Discrepancy Report

