
Intelligent Products For A Smarter World

OS-9 for 68K
Processors BLS

Reference

Version 3.1

2 OS-9 for 68K Processors BLS Reference

Copyright and Publication Information
Copyright ©2000 Microware Systems Corporation. All Rights Reserved. Reproduction of
this document, in part or whole, by any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without written permission from Microware
Systems Corporation.

This manual reflects version 1.0 of Enhanced OS-9 for 68K Processors. The Operating
system version is 3.1

Revision: B
Publication date: July 2000

Disclaimer
The information contained herein is believed to be accurate as of the date of publication.
However, Microware will not be liable for any damages including indirect or consequential,
from use of the OS-9 operating system, Microware-provided software, or reliance on the
accuracy of this documentation. The information contained herein is subject to change
without notice.

Reproduction Notice
The software described in this document is intended to be used on a single computer
system. Microware expressly prohibits any reproduction of the software on tape, disk, or
any other medium except for backup purposes. Distribution of this software, in part or
whole, to any other party or on any other system may constitute copyright infringements
and misappropriation of trade secrets and confidential processes which are the property of
Microware and/or other parties. Unauthorized distribution of software may cause damages
far in excess of the value of the copies involved.

For additional copies of this software/documentation, or if you have questions concerning
the above notice, please contact your OS-9 supplier.

Trademarks
OS-9, OS-9000, DAVID, and MAUI are registered trademarks of Microware Systems
Corporation. SoftStax, FasTrak, UpLink, and Hawk are trademarks of Microware Systems
Corporation. All other product names referenced herein are either trademarks or
registered trademarks of their respective owners.

Address
Microware Systems Corporation
1500 N.W. 118th Street
Des Moines, Iowa 50325
515-223-8000

Table of Contents

Chapter 1: Introduction 7

8 OS-9 for 68K Targets Supported
8 Software Packages
9 BLS Installation Kit Contents
10 MWOS Development Directory Structure
10 MWOS Subdirectories
16 General Installation Procedure

Chapter 2: Hardware Configuration and the Initial Boot 19

20 Target CPU Board Configuration
23 Sample Reconfiguration Session for MVME boards
24 Hardware Reconfiguration
25 Board Memory Size
25 Board ID
26 Group ID
26 VME Interrupt Levels
26 VME Slave Memory
26 VME Slave Memory Address
27 SCSI Reset on ROMBUG startup
28 Boot System Reconfiguration
29 Initial OS-9 Test Boot
OS-9 for 68K Processors BLS Reference 3

Chapter 3: Optional Hard Disk and Initial Networking Startup 33

34 Connecting A SCSI Hard Disk
34 Manual Installation Information
34 Formatting 4 Gigabyte or Smaller Drives
36 Formatting and Partitioning Drives Larger than 4 Gigabytes
41 Network Configuration
44 Establishing the Hard Disk Root Directory
44 Prepare Image on Host machine
45 Transfer Image to Target Machine

Chapter 4: Boot and ROM Customizing 49

50 Overview
51 PORTS Directory Organization
53 BLS Makefiles
56 Modifying Bootlists
59 Init Module
60 Customization Modules
61 Clock Modules
61 SCF and Pipeman
63 RBF
65 SBF
66 Initial System Process
67 Additional Modules and Utilities
68 Networking Modules
70 Networking Configuration Modules
71 Networking Utilities
73 NFS
74 Making Boots
74 I/O based Booters
75 Hard Disk Boot
75 Hard Disk Boot Method 1
76 Hard Disk Boot Method 2
4 OS-9 for 68K Processors BLS Reference

77 Floppy Boot
80 Manual Bootfile Installation Method 1
80 Manual Bootfile Installation Method 2
81 Manual Bootfile Installation Method 3
82 Tape Booting
82 Tape startup Sequence
82 Supplied Utilities
88 BootP Booting
88 Creating the Boot
89 Booting the boot
90 Customizing ROM images
90 Modifying the ROM Bootfile
92 initext File
94 Download Booting
98 ROM Customization (OEM Package)

Chapter 5: Configuring Your System for Networking 99

Chapter 6: Developing Your System in Hawk 101

Appendix A: SCSI Information 103

104 Overview
105 SCSI Software Configurations — Implementation Notes
105 SCSI IDs
106 Device Drivers: rbsccs/rbvccs
108 Differences Between rbsccs and rbvccs Device Descriptors
108 Other Important Device Descriptor Fields
110 Converting a rbsccs Drive for Use with rbvccs
111 Embedded SCSI Hard Disk Support
112 Embedded SCSI Floppy Disk Support
113 Embedded SCSI Tape Support
113 Module Locations
OS-9 for 68K Processors BLS Reference 5

 Index 115

 Product Discrepancy Report 125
6 OS-9 for 68K Processors BLS Reference

Chapter 1: Introduction

This manual describes installing Enhanced OS-9 for 68K on your target
system. This Board-Level Solution (BLS) provides a means for
end-users and Original Equipment Manufacturers (OEMs) to quickly
build standard VME-based systems with minimal effort.

This chapter includes the following sections:

• OS-9 for 68K Targets Supported

• BLS Installation Kit Contents

• MWOS Development Directory Structure

• General Installation Procedure
7

1 Introduction
OS-9 for 68K Targets Supported

Board Level Solutions (BLS) supported targets include:

• 68328:
MC328ADS

• CPU32:
MC68360 Quads (Quads) (OEM Package ONLY)

• 68040:
MVME162 (all models)
MVME167 (all models)

• 68060:
MVME172 (all models)
MVME177 (all models)

Software Packages

The CD contains Board Level Solution products for the boards listed
above. When ordering a BLS product for a specific board you will also
receive the ROMs for that particular board. For example, the EPROMs
for MVME162 FX and MVME162 LX boards are included when a 162
BLS is ordered. BLS packages are mostly binary based with the
sources required to configure the system through device descriptors,
the init module, and by adjusting the modules included in the boot.

Embedded OS-9 for 68K is the OEM Source package. This package
contains all the BLS versions along with the sources to rebuild drivers,
selected system modules, port specific ROM code and a variety of
example drivers to aid in porting OS-9 for 68K to a new hardware
platform. The OEM Source package does not include EPROMs for any
of the boards.

Both packages allow customizing the Embedded bootfile with support
for serial and parallel devices, RAM disks, SCSI disk and tape drives,
SPF based TCP/IP networking support, NFS and a variety of system
utilities.
8 OS-9 for 68K Processors BLS Reference

1Introduction
BLS Installation Kit Contents

The BLS installation kit consists of the following:

Table 1-1 BLS Installation Kit Contents

Quantity Description

 1 RomBug/Boot PROM(s) for specified board
(Not included in OEM Source package)

 1 Windows Hosted Installation CD

 1 Getting Started manual

 1 Support Registration card
OS-9 for 68K Processors BLS Reference 9

1 Introduction
MWOS Development Directory Structure

The Microware OS-9 products are developed in a directory structure
that allows for multiple processors and supported boards to share
common sources and definitions where possible. The directory tree is
referred to as the MWOS (Microware OS) directory structure.

The MWOS directory structure is installed on the host system. This
package supports Windows 95, Windows 98, or Windows NT host
development systems. The MWOS structure can also be installed on
the OS-9 target system. Generally, however, a simpler directory
structure is used on the target system—especially when no
development work is to be performed there.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The target disk structure is discussed in Chapter 3.

Customizing a BLS for a target platform that requires assembly,
compilation, or other build process, is performed within a PORTS
directory in the MWOS development directory structure.

MWOS Subdirectories

MWOS

UNIXDOS OS9 OS9000 SRC
10 OS-9 for 68K Processors BLS Reference

1Introduction
Table 1-2 MWOS Subdirectories

Directory Contains

OS9 OS-9 for 68K object code is targeted under this
directory. The 68K version of OS-9 has a kernel and
primary system modules written in assembly code.
All OS-9 specific source code, defs files, libraries,
processor family code, and ports reside here. Most
customizing of your system environment for the
BLS is performed under this directory structure.

OS9000 OS-9 directories for processors other than the 68k
family of processors. This is the C based version of
OS-9.

SRC All sources that are common at this level of the tree.
C defs, common I/O systems, user tools, and Dual
Ported I/O (DPIO) are examples of code found
under the MWOS/SRC directory.

DOS Similar to other OS directories. Contains
development tools for use on a Windows
cross-development host.

MAKETEMPL A directory for common makefile templates (include
files for makefiles). Files in this directory also
control which processors the template based
makefiles target.
OS-9 for 68K Processors BLS Reference 11

1 Introduction
Figure 1-1 OS9 Subdirectories

Table 1-3 OS9 Subdirectories

Directory Contains

68000 The object code and libraries specific to the 68000
family of processors or binaries created to run on all
versions of the Motorola MC68xxx family of
processors. Most OS-9 for 68K utilities are compiled
to run on all processors. In some cases (such as the
networking utilities), speed concerns require
compiling versions specifically for the 68020 and/or
CPU32 families.

The 68000 directory also contains code for the
68010, 68070, and 68302 processors.

CPU32 Files specific to the CPU32 family, such as the
68332, 68340, 68349 and 68360 processors.

68020 The cmds, libraries and ports specific to the
68020/68030 processors.

68040 The cmds, libraries, and ports specific to the 68040
processors (MVME162 and MVME167 board ports).

OS9

MWOS

68000 68020CPU32 SRCMAKETEMPL68040 68060
12 OS-9 for 68K Processors BLS Reference

1Introduction
Each CPU directory has a PORTS subdirectory. The PORTS subdirectory
provides directories for a variety of target system boards.

Figure 1-2 PORTS Subdirectories

Generally, if you are going to use peripheral cards with a variety of CPU
cards, you should locate them under the 68000 directories. Drivers and
card ports specific to 68020 or CPU32 family processors are located
under their respective <CPU>/PORTS directory. The 68040/PORTS
directory contains the MVME162 and MVME167 board ports
directories. The 68060/PORTS directory contains the MVME172 and
MVME177 board ports directories.

68060 The cmds, libraries, and ports specific to the 68060
processors (MVME172 and MVME177 board ports).

SRC The source files for the OS-9 for 68K drivers,
descriptors, system modules, defs, and macros. SRC
is intended to be a source directory containing
hardware-specific code written to be reusable from
target to target. It is not intended to be the repository
for final object modules that are built from this
source, although intermediate object files may be
found within its subdirectories.

Table 1-3 OS9 Subdirectories (continued)

Directory Contains

Serial CardCPU1 Card

PORTS

<CPU>

Disk Controller
Card

CPU2 Card SCSI CardEthernet Card
OS-9 for 68K Processors BLS Reference 13

1 Introduction
NoteNote
In previous releases of OS-9 packages, some or all of the board ports
directories were in the 68020/PORTS directory.

Each card subdirectory has a structure that includes CMDS and
CMDS/BOOTOBJS directories. CPU card directories may also contain a
BOOTLISTS subdirectory for use in creating boots from within the MWOS
directory structure.

Figure 1-3 SRC Subdirectories

Table 1-4 SRC Subdirectories

Directory Contains

DEFS Files of definitions that apply system-wide or are
processor independent. These include both assembler
.d and C .h include files.

IO Sources for all OS-9 for 68K-specific I/O subsystems
including file managers, drivers, and descriptors. The
file’s subdirectories are organized by subsystem.

SYSMODSDEFS IO MACROS ROM SYS

SRC

OS9
14 OS-9 for 68K Processors BLS Reference

1Introduction
NoteNote
The level of source code available under the SRC directory depends on
the type of package you purchased.

MACROS Files of assembly language macro definitions that apply
system-wide or are target independent.

ROM Sources for rebuilding boot ROM components, except
for a few that share source with SCSI drivers in IO
(OEM package only).

SYS A repository for files and scripts that would end up
residing in the OS-9 SYS directory on the root of the
system disk.

SYSMODS Sources for system extension modules.

Table 1-4 SRC Subdirectories (continued)

Directory Contains
OS-9 for 68K Processors BLS Reference 15

1 Introduction
General Installation Procedure

Following is a list of basic steps to complete to install Enhanced OS-9
for 68K on your target system. These steps are described in detail in the
following chapters.

Step 1. Install the Enhanced OS-9 Board Level Solution from your product CD
onto your Windows-based host development system.

Step 2. Choose one of the two methods for installing the ROM code onto the
CPU board.

Step 3. Start the target board for the first time using the OS-9 Boot that is
included in the ROM Image.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 2 for more information about steps 2 and 3.

Step 4. Partition and format any SCSI hard drives attached to the target system
(optional).

Step 5. Start OS-9 networking for the first time using startspf.ndbmod
(quick startup method).

Step 6. Load the hard disk with cmds and startup scripts (optional).

Step 7. Customize and install the bootfile and utility set for the target
environment.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For all packages, see Chapter 4. For systems with SCSI devices, see
Chapter 3.
16 OS-9 for 68K Processors BLS Reference

1Introduction
Step 8. Configure the appropriate networking drivers and NFS client systems.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 5 for information about network configuration.

Step 9. Set up the Hawk Development environment.

NoteNote
The Enhanced OS-9 for 68 Processors MVME Board Guide provides
specific information for CPU boards as well as information on
configuring a number of peripheral boards supported by Microware.
OS-9 for 68K Processors BLS Reference 17

1 Introduction
18 OS-9 for 68K Processors BLS Reference

Chapter 2: Hardware Configuration

and the Init ial Boot

This chapter includes the following topics:

• Target CPU Board Configuration

• Sample Reconfiguration Session for MVME boards

• Initial OS-9 Test Boot
19

2 Hardware Configuration and the Initial Boot
Target CPU Board Configuration

Before configuring your target board, be sure to read the following
reference materials:

• Follow the instructions for hardware preparation and installation
described in the manuals supplied with your CPU board or system.

• Read the Motorola debugger manuals included with the PROM/flash
code provided with your CPU board.

• Refer to the <CPU>Bug manual for your CPU board for details on
running the initial board diagnostics.

Complete the following steps to configure your target system:

Step 1. Remove the CPU board from the system. Take precautions to protect
the board from static damage.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Enhanced OS-9 for 68K MVME Board Guide for the
information specific to your CPU board. The section for each CPU
board contains jumper block diagrams/usage, ROM socket locations,
ROM start-up sequences, and any other information specific to the
board.

Step 2. Choose a method and install the OS-9/RomBug ROM code on your
target CPU board.

Generally, the OS-9/RomBug PROMs may coexist with the Motorola
Bug PROM code pre-installed on the CPU boards or the OS-9 PROM
code may be installed as the only debugger in the system. On some
CPU boards, flash memory may replace some or all of the ROM
20 OS-9 for 68K Processors BLS Reference

2Hardware Configuration and the Initial Boot
memory space. For boards with additional ROM or Flash space, the
OS-9 init module can be customized to search the additional areas for
OS-9 modules during system boot.

• Method 1: If you are using one of the MVME boards that has FLASH
memory available and you have a MOTBUG rom installed in the
board, this method involves using MOTBUG to program the flash
memory with the OS-9 ROM image provided.

This is the simplest method for changing the embedded boot image
on the target board. Use MOTBUG to perform the ENV, NIOT, NIOP,
and PFLASH command to setup, download, and program the
FLASH memory with the ROMBUG, Booters, and embedded OS-9
Boot ROM image. Once the FLASH memory is programmed, you
can choose, via a jumper setting, whether to have MOTBUG start
the system and then call the OS-9 ROM or to have the OS-9 ROM
be the primary startup code. Choosing the OS-9 ROM as the
primary startup code significantly decreases startup times.

• Method 2: Boards with no Flash memory or without MOTBUG or
other monitor PROMS require that you install the OS-9 EPROMS
provided with your BLS onto the board. This is also a faster method
of installing the OS-9 ROM code on your board. If you choose this
method be sure to retain any MOTBUG PROMS so that you can use
method 1 in the future or perform Motorola diagnostics on the board
if required.

On some boards, you can choose whether to leave the MOTBUG
PROMS in the primary socket(s) and install the OS-9 PROMS in a
secondary socket(s) or to install the OS-9 PROMS in the primary
socket(s) as the sole ROM code on the board. As with Method 1,
using only the OS-9 ROM code will decrease the time required for
the startup sequence.
OS-9 for 68K Processors BLS Reference 21

2 Hardware Configuration and the Initial Boot
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Enhanced OS-9 for 68K MVME Board Guide for information
on the specific sequences for programming flash memory or installing
the OS-9 PROMS on your board.

Generally the OS-9 for 68K system uses a console port configured at
9600 baud, 8 data bits, 1 stop bit, and no parity with XON/XOFF
handshaking. A three-wire RS232 cable with RX, TX, and signal ground
is the standard cabling required to proceed to the next section.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Enhanced OS-9 for 68K MVME Board Guide details any exception to
this configuration and the location of the console port.
22 OS-9 for 68K Processors BLS Reference

2Hardware Configuration and the Initial Boot
Sample Reconfiguration Session for MVME
boards

Once your system ROM startup method is configured, a reset or fresh
powerup should bring up the OS-9 ROM code. The MVME1xx board
PROMS and Flash images contain the ROMBUG debugger and a
reconfiguration menu for setting and saving a number of settings in the
NVRAM (Non-volatile RAM) provided on these boards.

The following example shows a configuration session for a MVME162
CPU board. The sequence of questions is identical for all the MVME1xx
BLS packages; however, the data displayed and available responses
may vary depending on the particular CPU board being configured.

Step 1. Power up CPU Board or press <Reset>.

The following lines are displayed:
OS-9/68K System Bootstrap

<Called>
Searching special memory list for symbol modules...

dn: 000000FF 00002000 00000000 00020000 00000000 00000001 FFFFE000 000069F8
an: FF800A6E FF800500 FFA40000 FFA20000 00007A00 00000400 00000400 000069F8
pc: FF800970 sr:2708 (--SI-7-N---)t:OFF msp:B7B2BD3B usp:00000000 ^isp^
0xFF800970 >43FAFBDA lea.l 0xFF80054C(pc),a1
RomBug: g

Step 2. Press letter g to start the boot up process.

The first time the board is powered up after the OS-9 ROM code is first
installed, the reconfiguration sequence is called. Additionally, if the
NVRAM CRC is found to be incorrect, the following sequence is
activated. The initial reconfiguration may also be activated by holding
down the <Abort> button on the CPU card as the card comes out of
the reset process. (Hold down the <Abort> button, press and release
the <Reset> button, then release the <Abort> button.)
OS-9 for 68K Processors BLS Reference 23

2 Hardware Configuration and the Initial Boot
NoteNote
This Abort/Reset sequence only works when the OS-9 ROM code is
installed in the primary bank. If the Motorola debugger is installed in the
primary ROM/FLASH bank, see Enhanced OS-9 for 68K MVME
Board Guide, for information about configuring the Motorola debugger
and the description of forcing a reconfiguration session.

*** ATTENTION ***

NVRAM was found corrupted - reconfiguration is forced.

Do you wish to reinitialize the new OS9 area
of NVRAM before entering new values:
(<yes>/<no>)? yes

Answering yes causes the NVRAM to be initialized to zero values and
all booters made available. Answering no leaves the last known values
in the NVRAM and keeps the current setting during reconfiguration.

Hardware Reconfiguration

For each question, you can select one of the following:

Table 2-1 Hardware Reconfiguration Responses

Key Result

Backspace Backspace over the value and enter a new value.

Tab Toggle between the current and default values.

Esc Exit the reconfiguration sequence.

Return Accept the value displayed.
24 OS-9 for 68K Processors BLS Reference

2Hardware Configuration and the Initial Boot
Board Memory Size
Warning: you are forced to enter the default value.

Board Memory Size: [current=0x0] [default=0x400000]
(<new_value><cr>/<tab>/<esc>)? 0x0
(<new_value><cr>/<tab>/<esc>)? 0x400000

Board ID
Board ID: [current=0] [default=15]
(<new_value><cr>/<tab>/<esc>)? 0
(<new_value><cr>/<tab>/<esc>)? 15

The board ID is used in conjunction with the Microware ISP Backplane
drivers. The default ID of 15 is used if no backplane driver is to be used
or if this CPU board is the only one in the system. For systems using
SPF based networking (all new installs) select the default value.

For systems using the discontinued ISP backplane driver refer to the 3.x
manuals for appropriate reconfiguration settings.

WARNING!
You are forced to enter the default value.

Table 2-2 Board Memory Sizes

Board Memory Size

MVME162
MVME167
MVME172
MVME177

the memory size is filled in automatically and cannot be
changed
OS-9 for 68K Processors BLS Reference 25

2 Hardware Configuration and the Initial Boot
Group ID
Group ID: [current=0x0] [default=0xd2]
(<new_value><cr>/<tab>/<esc>)? 0x0
(<new_value><cr>/<tab>/<esc>)? 0xd2

VME Interrupt Levels
VME interrupt levels enabled: [current=<none>]
[default=1234567]
(<newlist><cr>/<tab>/<esc>)?
(<newlist><cr>/<tab>/<esc>)? 1234567

If this CPU board is to service interrupts on the VME bus, select the
levels of interrupts the board is suppose to acknowledge. Generally, the
left-most board/system controller CPU is set to service all interrupts,
while the other CPUs are set to none. More complicated interrupt
schemes can be implemented if more than one CPU is on the same
VME backplane. Only one board should be set to service any particular
interrupt level.

VME Slave Memory
VME Slave Memory: [current=disabled] [default=enabled]
(enabled<cr>/disabled<cr>/<tab>/<esc>)? disabled
(enabled<cr>/disabled<cr>/<tab>/<esc>)? enabled

The VME slave memory is enabled to allow VME bus boards access to
the CPU cards’ on-board RAM.

VME Slave Memory Address
VME Slave Memory Address: [current=0x0] [default=0x0]
(<new_value><cr>/<tab>/<esc>)? 0x0

The VME slave address is the VME bus address at which the local
board's memory appears on the VME bus. That is, when other boards
want to access this CPU board's on-board memory, this is the starting
address of the CPU board's memory when addressed from other cards
on the VMEbus. The board should be set so each board’s memory
appears in non-overlapping address spaces on the VME bus.
26 OS-9 for 68K Processors BLS Reference

2Hardware Configuration and the Initial Boot
SCSI Reset on ROMBUG startup
SCSI Reset on ROMBUG startup: [current=disabled]
[default=enabled]
(enabled<cr>/disabled<cr>/<tab>/<esc>)? disabled
(enabled<cr>/disabled<cr>/<tab>/<esc>)? enabled

Generally the SCSI bus is issued a reset when the CPU card is reset.
This feature may be disabled if the reset is not desired.
OS-9 for 68K Processors BLS Reference 27

2 Hardware Configuration and the Initial Boot
Boot System Reconfiguration

The following questions are used to configure the boot-up sequence for
the CPU. Disabling the debugger causes the Boot Menu to display first.
Using the OS-9 break command causes a system reset if the debugger
is disabled.

Disabling the Boot Menu causes the system to follow the sequence
entered under the Booter Priority Order sequence in attempting to boot
the system. You may enter a given device more than once. Once the
menu is disabled, you need to use the Abort/Reset method previously
described to force the ROM code into the reconfiguration sequence.

Debugger: [current=enabled] [default=enabled]
(enabled<cr>/disabled<cr>/<tab>/<esc>)? enabled

Boot Menu: [current=enabled] [default=enabled]
(enabled<cr>/disabled<cr>/<tab>/<esc>)? enabled

Boot Drivers Available:

1 - Boot from SCSI(SCCS) hard drive
2 - Boot from Viper tape drive
3 - Boot from Teac SCSI floppy drive
4 - Boot from BOOTP i82596 LANC
5 - Boot from a non-volatile (Static) RAM disk
6 - Load Bootfile from ROM
7 - Boot from ROM
8 - Boot Manually Loaded Bootfile Image
The priority of these boot drivers can be set below.
This priority determines the order that the boot drivers
will be selected when your system is configured to boot
automatically. It also determines the order that they
appear in the "boot driver menu" as well.
Booter Priority Order: [current=12345678] [default=12345678]
(<newlist><cr>/<tab>/<esc>)? 12345678

Is this the configuration you want:
(y)es will reconfigure and restart the system.
(n)o will restart this reconfiguration dialogue.
(<yes>/<no>)? yes

Repeat the process or enter yes to restart the system with the new
values for hardware and boot system configuration.
28 OS-9 for 68K Processors BLS Reference

2Hardware Configuration and the Initial Boot
Initial OS-9 Test Boot

Once you have configured the NVRAM data structure, you are ready to
boot OS-9 for the first time. The following example uses the
configuration as set up in the previous section on an MVME162
CPU-based system. The OS-9/RomBug PROMs contain a ROM-based
OS-9 for 68K Boot for your CPU board with drivers for the serial
devices, a SCSI hard disk, SPF based TCP/IP networking, and the user
state HAWK target daemons. This boot also contains a small set of
utilities that simplify downloading additional modules.

The following sequence shows the OS-9 for 68K system first being
booted from ROM, then being loaded from ROM, and finally example
output from some of the utilities contained in OS-9 for 68K in ROM.

After the reconfiguration sequence, you see the following display:
OS-9/68K System Bootstrap

<Called>
Searching special memory list for symbol modules...

dn: 000000FF 00002000 00000000 00020000 00000000 00000001 FFFFE000 000069F8
an: FF800A6E FF800500 FFA40000 FFA20000 00007A00 00000400 00000400 000069F8
pc: FF800970 sr:2708 (--SI-7-N---)t:OFF msp:B7B2BD3B usp:00000000 ^isp^
0xFF800970 >43FAFBDA lea.l 0xFF80054C(pc),a1
RomBug: g

After the RomBug initial register dump is displayed, press g <ret> to bring up

the boot menu. In this first example we will boot from ROM.

BOOTING PROCEDURES AVAILABLE -------- <INPUT>

Boot from Viper tape drive ---------- <vs>
Boot from Teac SCSI floppy drive ---- <fs>
Boot from SCSI(SCCS) hard drive ----- <hs>
Boot from BOOTP backplane ----------- <bp>
Boot from BOOTP am7990 LANCE -------- <le>
Load Bootfile from ROM -------------- <lr>
Boot from ROM ----------------------- <ro>
Boot Manually Loaded Bootfile Image - <ml>
Reconfigure the boot system --------- <rc>
Restart the system ------------------ <q>

Select a boot method from the above menu.
OS-9 for 68K Processors BLS Reference 29

2 Hardware Configuration and the Initial Boot
Step 1. Enter ro <Return> to boot the system from ROM. The ROM area is
searched and if an OS-9 kernel is found, it is executed from its position
in the ROM. Next, the kernel searches for the rest of the OS-9 system
modules and executes them from ROM and the following displays:

Now searching memory ($FF820000 - $FF827FFF) for an OS-9
Kernel...

An OS-9 kernel module was found at $FF820000
A valid OS-9 bootfile was found.
Sysgo can’t chx to ’CMDS’
Sysgo can’t open ’SYS/startup’ file
$

OS-9 is now running as shown by the $ prompt from the shell.

The system in the ROM is set up to use the device /dd as the default
system device. In this case /dd is a standard RAM disk, which is empty
when first initialized. Therefore when sysgo looks for a CMDS directory
and the SYS/startup files, neither are found. When sysgo doesn’t find
the CMDS directory or the Startup file, it prints the warning messages
and continues to process toward forking mshell on the console port.

If /dd were a hard disk or Non-volatile RAM disk, sysgo would have
performed a chx to CMDS and would have attempted to run the
SYS/startup file as a shell script before forking mshell on the console.

The system is now using modules running out of ROM. Since access
time for code in ROM is generally slower than the same code running
from RAM, you should reset the system and reboot using the Load
Bootfile from ROM boot option. This option causes the OS-9 for
68K system in ROM to be loaded into RAM much the same as if it had
been booted from a disk, tape, or network booter. To reboot the system,
press the reset button or execute the break (break) command, then
reset the system using the reset (rst) command from RomBug.
$ break
WARNING: Timesharing HALTED.
 (type ‘G’ to resume.)

<Called>
dn: B0BD06FF 1BADD00D 00000000 003E0003 00000000 003E3038 000012D0 00000000
an: 003E42A4 00000000 FF86BE74 003E42BC 003E42C8 003E4288 003EB000 003FFAE0
pc: 0000BA16 sr:2708 (--SI-7-N---)t:OFF msp:003E6FA0 usp:003E4284 ^isp^
0x0000BA16 >4CDF7001 movem.l (a7)+,d0/a4-a6
30 OS-9 for 68K Processors BLS Reference

2Hardware Configuration and the Initial Boot
RomBug: rst
OS-9/68K System Bootstrap

<Called>
Searching special memory list for symbol modules...

dn: 000000FF 00002000 00000000 00020000 00000000 00000001 FFFFE000 000069F8
an: FF800A6E FF800500 FFA40000 FFA20000 00007A00 00000400 003EB000 000069F8
pc: FF800970 sr:2708 (--SI-7-N---)t:OFF msp:003E6FA0 usp:00000000 ^isp^
0xFF800970 >43FAFBDA lea.l 0xFF80054C(pc),a1
RomBug: g

Step 2. Again, enter the go command to bring up the boot menu, by pressing
letter g and the <Return> key. Select the Load Bootfile option from
ROM boot options by entering lr and pressing the <Return> key.

BOOTING PROCEDURES AVAILABLE -------- <INPUT>

Boot from Viper tape drive ---------- <vs>
Boot from Teac SCSI floppy drive ---- <fs>
Boot from SCSI(SCCS) hard drive ----- <hs>
Boot from BOOTP backplane ----------- <bp>
Boot from BOOTP am7990 LANCE -------- <le>
Load Bootfile from ROM -------------- <lr>
Boot from ROM ----------------------- <ro>
Boot Manually Loaded Bootfile Image - <ml>
Reconfigure the boot system --------- <rc>
Restart the system ------------------ <q>
Select a boot method from the above menu: lr
Now searching memory ($FF820000 - $FF83FFFF) for an OS-9
Kernel...

An OS-9 kernel module was found at $FF820000
A valid OS-9 bootfile was found.
Sysgo can’t chx to ’CMDS’
Sysgo can’t open ’SYS/startup’ file
$

The OS-9 for 68K system is now running. This time the system is
executing from RAM.
OS-9 for 68K Processors BLS Reference 31

2 Hardware Configuration and the Initial Boot
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 4 for more information on init module search lists.

You may now execute a number of standard OS-9 utilities contained in
this ROMed version of OS-9 for 68K:

mfree Shows the amount of free memory in the
system.

procs Shows the running processes.

mdir Displays all the modules available in the
system.

mdir -e Displays additional information including
the address where the module is
located.

The following example shows the results for running mfree:
$ mfree -e
Minimum allocation size: 4.00 K-bytes
Number of memory segments: 1
Total RAM at startup: 4096.00 K-bytes
Current total free RAM: 3860.00 K-bytes

Free memory map:

 Segment Address Size of Segment
 ----------------- --------------------------
 $1A000 $3C5000 3860.00 K-bytes

$ procs
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 0 0.0 128 4.00k 0 w 0.00 8760:05 sysgo <>>>term
 3 2 0.0 128 12.00k 0 w 0.21 8760:05 shell <>>>term
 14 3 0.0 128 32.00k0 * 0.09 0:00 procs <>>>term

You can also try some of the other utilities such as setime, date,
tmode, and devs.

Congratulations, you have successfully booted your OS-9 for 68K
system.
32 OS-9 for 68K Processors BLS Reference

Chapter 3: Optional Hard Disk and

Init ial Networking Star tup

At this point you should have booted your OS-9 target system.

If your board supports connection to a SCSI hard drive and/or has
networking capabilities, read the following sections:

• Connecting A SCSI Hard Disk

• Network Configuration

• Establishing the Hard Disk Root Directory
33

3 Optional Hard Disk and Initial Networking Startup
Connecting A SCSI Hard Disk

Manual Installation Information

If you haven’t already done so, shut down the target machine and
connect a SCSI hard disk to the CPU board. There are various
hardware locations for the SCSI connector, including the following:

• A connector located on the faceplate of the VME card.

• The MVME712 P2 Bus connector or the 712 breakout module.

• A connector on the surface of the card.

Be sure to observe proper SCSI termination requirements. The end
devices on a SCSI bus should be set to provide termination for the bus.
No other devices on the bus should have termination enabled.

In some cases termination is controlled by jumper selection while other
devices/boards may require the addition or removal of resistor packs.
New devices may have automatic termination. Refer to the device
hardware manuals for more information.

If the hard drive is 4 Gigabytes or less in size, you can follow the
instructions in the following section. If the drive is larger than 4
Gigabytes, proceed to the appropriate section.

Formatting 4 Gigabyte or Smaller Drives

If your hard drive is 4 Gigabytes or less in size, use the descriptors in
the ROM boot to format the drive without using the partition utility. The
following sequence uses the format utility to format a 224 meg drive
called /h0fmt. If the drive is larger than 4 Gigabytes, format will
automatically size it to 4 Gigabytes. If you then use the partition utility,
you should select 4 Gigabytes for the size of the first partition.

$ tmode nopause
$ format /h0fmt
 Disk Formatter
OS-9/68K V3.1 Motorola VME162 - 68040
34 OS-9 for 68K Processors BLS Reference

3Optional Hard Disk and Initial Networking Startup
------------ Format Data ------------
Fixed values:
 Disk type: hard
 Sector size: 512
 Physical Disk capacity: 485601 sectors
 (248627712 bytes)
 Logical Disk capacity: 0 sectors
 (0 bytes)
 Sector offset: 0
 Track offset: 0
 LSN offset: $000000
 Minimum sect allocation: 32

Variables:
Sector interleave offset: 1

Formatting device: /h0fmt
proceed? y
this is a HARD disk - are you sure? y

NoteNote
SCSI hard disks generally do not require physical formatting unless you
wish to change the physical sector size. If you do choose to do a
physical format, you should know that on large drives, the formatting
operation may take several hours or more. During these hours, the
drive-in-use light may or may not be on. Physical formatting is still
appropriate if the drive has unreadable sectors.

On most SCSI drives, performing a verify is not necessary because the
drive should complete the verify with zero sectors bad. Selecting yes
causes every sector of the disk to be read and is appropriate if you have
any concerns about the physical format of the drive.

physical verify desired? n
volume name: Machine Name: /H0

At this point if you chose to verify the drive, you will see a display of
track numbers as they are verified. If no verify was selected, you should
see the driver light blink a number of times as format writes the bitmat
on the disk.
OS-9 for 68K Processors BLS Reference 35

3 Optional Hard Disk and Initial Networking Startup
The drive is now ready for use. After starting the networking as
described later in the chapter, proceed to Chapter 4 for instructions on
loading the disk with basic commands, startup scripts, and other useful
files.

Formatting and Partitioning Drives Larger than 4
Gigabytes

If you are connecting a SCSI hard drive that is larger than 4 Gigabytes,
you must partition the drive into virtual drives of less than 4 Gigabytes.

The OS-9 ROM boot contains the partition utility, written specifically for
partitioning and formatting your hard drive. The OS-9 for 68K Random
Block File manager (RBF) can format drives up to 4 Gigabytes in size.
For drives larger than 4 Gigabytes, RBF uses a system of breaking the
disk up into virtual partitions. The term virtual partition is used because
no partition table exists on the drive. Instead, the partition utility creates
a number of new RBF device descriptors that access the physical drive
as a number of virtual drives based on starting Logical Sector Numbers
(LSN) and size of the virtual drive/partition. In terms of RBF they appear
as separate drives while in terms of the physical drive the are virtual
partitions.

The /h0 descriptor in the ROM boot can be used to run the partition
command as described in the following section. The descriptors are
then saved on the first partition of the hard disk and help maintain the
connection between the partitioning information and the physical drive
that was partitioned. The startup file residing in the SYS directory then
loads the rest of the descriptors from the drive’s first partition, so the
rest of the virtual partitions can be accessed.

NoteNote
Because of a possibility of mixing descriptors and the drive they
partition, it is strongly recommended that a consistent method is used
for partitioning large drives.
36 OS-9 for 68K Processors BLS Reference

3Optional Hard Disk and Initial Networking Startup
In the following example the drive is broken up into 4 Gigabyte partitions
with the final partition being the only one less than 4 Gigabytes.

WARNING!
Using a descriptor that is improperly matched to the virtual drive
partition can lead to file structure corruption.

Step 1. View the options on partition:

$ partition -?
Syntax: partition [<opts>] <device name> {[<descs>] [<opts>]}
Function: partition a large (>4GB) hard disk
Options:
 -r overwrite existing files
 -w=<dir> output generated device descriptors to <dir>
 -z=<path> read partition device descriptors from <path>

Step 2. Start the partition utility using the /h0 descriptor that is already part of
the ROM boot. The h0 drive will also be used to write the descriptors
after they are created. Once the first partition is formatted and the
descriptors are saved in the Root directory of the disk, they can be
loaded into memory so that the additional partitions can be accessed.
You can also use the /dd ramdisk drive with the -w option. However, you
must copy the descriptors to the hard drive so they won’t be lost at
system reset.

The default values are used in most cases. The example drive is
approximately 21.61 Gigabytes. The convention of h01 refers to the
drive with a SCSI ID of 0 (zero), partition 1.

NoteNote
The /h01 and /h0 will refer to the same partition once the /h01 partition
has been formatted.
OS-9 for 68K Processors BLS Reference 37

3 Optional Hard Disk and Initial Networking Startup
$ partition -w=/h0 /h0<CR>
enter partition name (h01) =><CR>
enter a partition size (4.00GB) =><CR>

enter partition name (h02) =><CR>
enter a partition size (4.00GB) =><CR>

enter partition name (h03) =><CR>
enter a partition size (4.00GB) =><CR>

enter partition name (h04) =><CR>
enter a partition size (4.00GB) =><CR>

enter partition name (h05) =><CR>
enter a partition size (4.00GB) =><CR>

enter partition name (h06) =><CR>
enter a partition size (1.61GB) =><CR>

1. create new partition
2. edit existing partition
3. delete existing partition
4. display partition information
5. write device descriptors for partitions
6. format a partition
7. format all partitions
8. exit
please enter command number =>4
partition names and sizes:

partition 1 (h01): 4.00GB (8388607 blocks)
partition 2 (h02): 4.00GB (8388607 blocks)
partition 3 (h03): 4.00GB (8388607 blocks)
partition 4 (h04): 4.00GB (8388607 blocks)
partition 5 (h05): 4.00GB (8388607 blocks)
partition 6 (h06): 1.61GB (3379609 blocks)

1. create new partition
2. edit existing partition
3. delete existing partition
4. display partition information
5. write device descriptors for partitions
6. format a partition
7. format all partitions
8. exit
38 OS-9 for 68K Processors BLS Reference

3Optional Hard Disk and Initial Networking Startup
You can edit or delete partitions to make any changes before actually
formatting the virtual partitions in the next step. Using the format all
partitions produces the following queries. You can also choose to
format single partitions using option 6.

At a minimum you must format the first partition, /h01 so that the
descriptors can be saved to the drive.

please enter command number =>7
format partition h01? y
formatting partition h01...
format partition h02? y
formatting partition h02...
format partition h03? y
formatting partition h03...
format partition h04? y
formatting partition h04...
format partition h05? y
formatting partition h05...
format partition h06? y
1. create new partition
2. edit existing partition
3. delete existing partition
4. display partition information
5. write device descriptors for partitions
6. format a partition
7. format all partitions
8. exit

Step 3. Finally, the descriptors are saved to the Root of the first partition. After
the descriptors are saved, they can be reloaded for accessing the
additional partitions.
please enter command number =>5
1. create new partition
2. edit existing partition
3. delete existing partition
4. display partition information
5. write device descriptors for partitions
6. format a partition
7. format all partitions
8. exit

please enter command number =>8
paritions may need formatting - format now? n
$ dir /h0
OS-9 for 68K Processors BLS Reference 39

3 Optional Hard Disk and Initial Networking Startup
 Directory of /h0 22:34:43
h01 h01fmt h02 h02fmt h03
h03fmt h04 h04fmt h05 h05fmt
h06 h06fmt
$ load -d /h0/*
$ free /h02
"h02" created on: Aug 16, 1999
Capacity: 8388607 sectors (512-byte sectors, 32-sector clusters)
8388448 free sectors, largest block 8388448 sectors
4294885376 of 4294966784 bytes (4095.92 of 4095.99 Mb) free on media (99%)
4294885376 bytes (4095.92 Mb) in largest free block

The drive is now ready to use. For ease of loading the partitions in the
future, store them in a sub-directory of the root directory called
PARTITIONS on a partitioned drive, for example /h0/PARTITIONS.

The startup file can then load the descriptors using commands such as:

Load -d /h0/partitions/* OR Load -d /h01/partitions/*
Load -d /h11/partitions/*

Once the mv or copy and del commands are available on the target
machine, it is easy to move the descriptor files out of the root directory
into the PARTITION subdirectory.
40 OS-9 for 68K Processors BLS Reference

3Optional Hard Disk and Initial Networking Startup
Network Configuration

The example file, MWOS/SRC/SYS/startspf.ndbmod contains a
sequence of commands used to start networking on your target system
for the first time.

You must edit the file to set the information for your networking
environment. Once the file is edited, you can use your editor to cut lines
from the file and paste them into the OS-9 command line running on the
target. Alternatively, you can type them on the command line and edit
them as you proceed.

If your system has a hard drive that was configured according to the
previous section, you can save the inetdb3 module to the disk once it
is created. Alternatively, once FTP has been started, you can transfer
your edited startspf.ndbmod file to the hard drive and simply run it
as a shell script to start the networking after each reboot.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Starting the networking for ROM based systems is described in
Chapter 5.

Following is the example startspf.ndbmod file:
-t

* Initial Startup sequence for networking using the Rommed Boot *
* *
* Lines that start with ** should be used as examples to set values *
* appropriate for your network enviroment. Lines currently not commented *
* out should not need to be customized for the initial startup of the *
* target board. *
* *
* Edit this file and if possible cut/paste each appropriate line onto the *
* console command line to initially start the SPF/Lancom networking on *
* the target board. *
* *
* NOTE: Once a storage device is available, the inetdb3 can be saved to *
* disk and simply reloaded via a startup file. *
* *

OS-9 for 68K Processors BLS Reference 41

3 Optional Hard Disk and Initial Networking Startup
*
* Inititialize System MBuf system call
* NOTE: This is already done via init module in most cases.
* NOTE: MBinstall utility not in ROMBoot
*
-nx
*mbinstall
-x
*
* Create inetdb3 module
* Type ndbmod -? for help on parameters
*
ndbmod create inetdb3 11 400 0 160 0 0 0 100 0 400 65 256
*
* Initialize interface information
* Change 192.168.0.5 to your system’s IP address
* Change 255.255.255.0 to your system’s netmask
*
**ndbmod interface add enet0 address 192.168.0.5 netmask 255.255.255.0 binding
/spie0/enet
*
* Define domain and Addresses of DNS Servers
* Change "MyDomain.com" to your domain name
* Adjust addresses after "server" to match your DNS server’s IP address
* Remove second server entry if not requred
*
**ndbmod resolve MyDomain.com server 192.168.0.32 server 192.168.0.254
*
* Set hostname
* Change "MyHostName" to the name of your system
*
**ndbmod hostname MyHostName
*
* Add locally defined Host names
* Not required if DNS available
* Room for approx 16 available
* Add IP addresses and Hostnames as desired.
*
**ndbmod host add 192.168.0.5 Hawk5
**ndbmod host add 172.16.0.32 DNServe
*
* Add Default and other Routes
* Change 192.168.0.254 to the IP address of your default router
*
**ndbmod route add Default 192.168.0.254
*
* Start SoftStax networking
*
ipstart
*
* Start Routing deaemon (Not in ROM Boot)
*
*routed <>>>/nil &
*

42 OS-9 for 68K Processors BLS Reference

3Optional Hard Disk and Initial Networking Startup
* Start services Daemon(s)
*
* Chd assumes /dd device (ramdisk) is part of Rom boot.
* Setup an execution directory (optional)
* Chx to the executiton directory (optional)
* inetd: use once login and password file is available in a SYS directory
* telnetd: with auto start of mshell (no login)
* ftpd: with no login authentication
*
chd /dd
-nx
makdir /dd/CMDS
chx /dd/cmds
-x
*inetd <>>>/nil &
telnetd -f=mshell <>>>/nil &
ftpd -u <>>>/nil &
*
* spfndpd: Start Hawk User state debugging daemon
* spfnppd: Start Hawk Profiling Daemon (Not in ROM Boot)
*
spfndpd <>>>/nil &
*spfnppd <>>>/nil &

Starting spfndpd is only required if you are connecting to your target
with Hawk during this session (before the next reboot). As noted in the
comments, telnetd has been started so that a telnet session to your
machine will immediately provide a “$” mshell prompt without any login
required. Additionally, FTP has been started to not authenticate logins.
While you will need to enter a username and password, they are not
checked, therefor not requiring the login command or a password file.
These daemon startup methods are provided for the initial startup of the
system and loading of the optional attached hard drive and NOT
recommended as the normal startup sequence.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the MWOS/SRC/SYS/startspf file for standard startup
examples.

Test your target system by running telnet or ftp from your Host system to
the target. You can also telnet or ftp from the console on your Target
machine to other machines on your network.
OS-9 for 68K Processors BLS Reference 43

3 Optional Hard Disk and Initial Networking Startup
Establishing the Hard Disk Root Directory

At this point, your primary hard drive should be formatted and you
should have established networking connections. The final step is to
load the basic disk structure required on the Target system.

Prepare Image on Host machine

Step 1. Using Windows Explorer (or other disk browser) open the ports
directory for your board.

NoteNote
The board guide for your specific board contains the exact pathlist.

For example, the MVME162 is MWOS/OS9/68040/PORTS/MVME162.
Generally, the CMDS directory is built up by starting with the 68000
CMDS and then overlaying additional CMDS from appropriate
directories on top.

Step 2. Create a sub-directory called Disk_Image.

Step 3. Build the Disk_Image/CMDS directory.

• Right click on MWOS/OS9/68000/CMDS and select copy.

• Right click on the Disk_Image directory and select paste.

• Right click on MWOS/OS9/68020/CMDS and select copy.

• Right click on the Disk_Image directory and select paste.

When the dialog box asks about replacing files, click on yes to all.

• Right click on MWOS/OS9/68040/CMDS and select copy.

• Right click on the Disk_Image directory and select paste replacing
files with yes to all.
44 OS-9 for 68K Processors BLS Reference

3Optional Hard Disk and Initial Networking Startup
• Right click on MWOS/OS9/68040/PORTS/MVME162/CMDS and
select copy.

• Right click on the Disk_Image directory and select paste.

Step 4. Build the Disk_Image/SYS directory.

• Right click on MWOS/SRC/SYS and select copy.

• Right click on the Disk_Image directory and select paste.

• Right click on MWOS/OS9/SRC/SYS and select copy.

• Right click on the DISK_Image directory and select paste.

• When the dialog box asks about replacing files, click on yes to all.

Add other files as desired.

Transfer Image to Target Machine

After preparing your image on the host machine, you can use FTP to
transfer the files from the host to the root directory of your target
machine disk. Following is an example of this process.

Step 1. Create a TAR Archive.

Using a Windows hosted tar.exe program create a tar archive of the
Disk_Image directory by changing into the Disk_Image directory and
running a command, on the host, similar to:

>tar -cvf tar.file CMDS SYS

CMDS/
CMDS/arp
CMDS/attr
CMDS/backup
CMDS/beam
CMDS/bfed
CMDS/binex...

You can also add additional files and directories with this command line.
OS-9 for 68K Processors BLS Reference 45

3 Optional Hard Disk and Initial Networking Startup
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

You can find an example of a Windows hosted tar program at the
following url:

http://www.reedkotler.com/RKTOOLS/rktools.html

Step 2. FTP the tar.file to the root directory of your target machine disk
using binary mode.

NoteNote
The procedure will vary slightly depending on which FTP software you
are using.

From your Windows host machine, select Start -> Run. Type the
following:

ftp <target machine>

The following displays in a DOS shell window. Enter the commands as
shown.

Connected to <target machine>.
220 jimi.microware.com OS-9 ftp server ready

User (jimi.microware.com:(none)): <cr>
331 password required for (none)

Password: <cr>
230 user (none) logged in

ftp> bin
200 Type set to I.

ftp> hash
Hash mark printing On (2048 bytes/hash mark).
ftp> cd /h0
250 CWD command ok
46 OS-9 for 68K Processors BLS Reference

3Optional Hard Disk and Initial Networking Startup
ftp> put tar.file /pipe/tar.file
200 PORT command ok
150 Opening data connection for /pipe/tar.file
(172.16.4.207,4712).

#########

This starts the download to a named pipe on the target. The download
pauses once the named pipe is full.

Step 3. On the OS-9 target machine, untar from the named pipe.

$ chd /h0
$ tmode nopause
$ tar -xvf /pipe/tar.file
drwxrwxrwx 0/0 0 Sep 2 11:40 1999 CMDS/
-rw-rw-rw- 0/0 6934 Jul 14 21:30 1999 CMDS/arp
-rw-rw-rw- 0/0 4284 Jul 14 09:34 1999 CMDS/attr ...

NoteNote
Tar is included in the ROM boot on the MVME target machines.

Step 4. On the host, end the FTP session when the transfer is complete.

226 Transfer complete
7055360 bytes sent in 164.60 seconds (42.86 Kbytes/sec)

ftp> quit
221 Goodbye
OS-9 for 68K Processors BLS Reference 47

3 Optional Hard Disk and Initial Networking Startup
Step 5. On the target, set the file permissions of the files in CMDS:

$ chx /h0/CMDS
$ attr -ns CMDS SYS
$ dir -ru CMDS ! attr -nspeeprrz
d-ewrewr CMDS/BOOTOBJS
d-ewrewr CMDS/MAUIDEMO
d-ewrewr CMDS/NOCSL
--ewrewr CMDS/arp
--ewrewr CMDS/attr
--ewrewr CMDS/backup ...

Once the CMDS directory is on the hard drive, you can access the
additional utilities by performing the chx command above.

Step 6. Correct the line termination of the files in SYS:

$ chd /h0/SYS
$ cudo -cdo *

This procedure converts the line terminations on text files from
Windows (<cr><lf>) to OS-9 (<cr>).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 4 describes customizing your boot so the SYS/startup file is
run as the system boots up.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The files in the SYS directory should be customized as desired.
Chapter 5 provides an overview of the networking startup methods.
48 OS-9 for 68K Processors BLS Reference

Chapter 4: Boot and ROM

Customizing

This chapter includes the following topics:

• Overview

• PORTS Directory Organization

• BLS Makefiles

• Modifying Bootlists

• Making Boots

• Tape Booting

• BootP Booting

• Customizing ROM images

• Download Booting

• ROM Customization (OEM Package)
49

4 Boot and ROM Customizing
Overview

Each CPU Board Level Solution (BLS) package contains a version of
OS-9 for 68K that can be booted from ROM. This chapter explains
customizing the BLS and preparing a new boot for the CPU card. The
basics for modifying the modules found in ROM are also covered.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 2 describes booting the ROM-based system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Issues related to configuring the networking capabilities are covered in
Chapter 5.

Once your development system is configured with the MWOS directory
structure from a BLS or OEM package, you can customize the target
system for your specific requirements.

Many of the examples in this chapter are based on the MVME162 BLS
package. The board directory for the MVME162 is
MWOS/OS9/68040/PORTS/MVME162.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 1 of this manual for an overview of the MWOS directory
structure. The location of the PORTS directory for each BLS is supplied
in Enhanced OS-9 for 68K MVME Board Guide.
50 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
PORTS Directory Organization

Within the 68000/PORTS, 68040/PORTS, 68060/PORTS and
CPU32/PORTS directories, sub-directories are created for each board to
which OS-9 for 68K has been ported. The port directory for a BLS CPU
board contains a number of subdirectories and files enabling you to
adapt the board to your specific requirements. The MVME162 port
directory contains the following subdirectories and files:

BOOTLISTS Example boot module lists (bootlists) for
making boots.

BOOTS Makefiles for making a number of default
boot images.

DISK_IMAGE An optional directory for use in gathering
the files to be transferred to systems
configured with a hard drive or flash
drive.

CMDS Utilities for use with the board. The
BOOTOBJS subdirectory and its
subdirectories contain the board specific
system modules.

INIT Makefiles for creating different init
module configurations.

PCF PC File manager descriptor building.

PIPE Pipe descriptor building.

RBF Random Block File manager disk
support build directory.

ROM_CBOOT Ports using the CBOOT based ROM
technology use this directory to build
ROM images with or without ROMBUG
and to change the ROM based bootfile
for the system.
OS-9 for 68K Processors BLS Reference 51

4 Boot and ROM Customizing
ROM Ports using Modular ROM technology for
their ROM code or a P2 loadable
debugging and low level communication
system build components from this
directory.

SBF Sequential Block File manager Tape
support build directory.

SCF Sequential Character File manager
support build directory. Descriptors and
board specific drivers (OEM Package
only) are built from here.

SCSI SCSI support build directory (OEM
Package only).

SPF Stacked Protocol File manager
(SoftStax) configuration build directory.

SYSMODS A variety of additional system modules
specific to the board are built from here.
Ticker, Real Time Clock, and snooper
modules are examples. (OEM Package
only).

systype.d The systype.d file contains the
hardware and software definitions to
create the board specific modules. The
definitions are an excellent source for
information about how the hardware is
set up by the ROMs included with the
BLS. Any changes made to descriptors,
init modules, and other user
configurable modules normally start by
editing the systype.d file and then
running the appropriate makefiles to
recreate the new OS-9 module.

defsfile The defsfile in included by many
source files to reference required defs.
52 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
BLS Makefiles

This is an example list of makefiles included in the MVME162 BLS
along with the hierarcy of makes called from parent makefiles. The
specific makefiles vary considerably between boards.

Table 4-1 MVME162 PORT Directory Makefiles

Makefile Called Makefile Called
Makefile
Called Comments

INIT/makefile

INIT/init_rom.mak

Init_rom

INIT/init_d0.make

Init_d0

INIT/init_h0.make

Init_h0

INIT/init_dd.make

Init_dd

SYSMODS/makefile

SYSMODS/snoop.make

SYSMODS/clock.make Ticker and real time clock modules

SCF/makefile

SCF/scf_descriptors.make Board’s SCF descriptors

SCF/scf_drivers.make (OEM) Board’s SCF drivers

RBF/makefile

RBF/rbf_descriptors.make

RBF/rbf_teac_descriptors.make

RBF/rbf_vccs_descriptors.make

RBF/rbf_nvram_descriptors.make

SBF/makefile

SBF/sbf_viper_descriptors.make

SBF/sbf_exabyte_descriptors.make

SBF/sbf_teac_descriptors.make

SCSI/makefile
OS-9 for 68K Processors BLS Reference 53

4 Boot and ROM Customizing
SPF/makefile

SPF/SP82596/makefile Ethernet descriptor and driver (OEM
only)

SPF/ETC/makefile inetdb modules

PCF/makefile

PCF/pcf_descriptors.make

BOOTS/makefile

BOOTS/d0_bootfile.make

BOOTS/h0_bootfile.make

BOOTS/viper_tape_bootfile.make

ROM_CBOOT/makefile

ROM_CBOOT/rom.make Nobug version of ROM

ROM_CBOOT/rombug.make Rombug version of ROM

ROM_CBOOT/rom_initext.make Builds the ROM init extension library

ROM_CBOOT/rom_booters.make Builds raw sysinit and booters image

ROM_CBOOT/rom_bootfile.make Makes ROM bootfile

OEM Only Common makefiles

ROM_CBOOT/rom_common.make Creates rom_common.l

ROM_CBOOT/rom_serial.make Creates rom_serial.l

ROM_CBOOT/rom_port.make Creates rom_port.l

ROM_CBOOT/rom_descriptors.make Creates rom_descriptors.l

ROM_CBOOT/rom_image.make Creates rom_image.l

Table 4-1 MVME162 PORT Directory Makefiles (continued)

Makefile Called Makefile Called
Makefile
Called Comments
54 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
NoteNote
On Windows cross-hosted development systems, makefiles must be
executed with the os9make command.

The master makefile initiating all the others is makefile. Only the
modules that require rebuilding are rebuilt. Bootfiles and ROM images
are always reconstructed.
OS-9 for 68K Processors BLS Reference 55

4 Boot and ROM Customizing
Modifying Bootlists

This section contains a bootlist file with enhanced descriptions of the
modules available for use in an OS9Boot file. The process of making a
new boot involves the following basic steps:

• Creating or modifying an appropriate bootlist file

• Generating a boot for the machine using one of the bootfile
makefiles

The pathlist contained in the bootlist is for the MWOS directory structure
and is relative to the root of the board’s port directory. Modules
customized for a particular system or CPU board go down to the local
CMDS/BOOTOBJS directory, while generic system modules and VMEbus
peripheral boards go up and over to reference the modules for use in
the boot.

If you choose to move the modules for creating boots to a target’s
/H0/CMDS/BOOTOBJS directory, simply remove all relative pathlists
before the CMDS part of the pathlist and then place the edited bootlist in
an /H0/BOOTLISTS directory. The process described in Chapter 3 for
creating the hard drive disk image should have included all the modules
needed for making a boot. As you customize some modules on your
development system, additional modules may need to be transferred to
the target system disk drive.

NoteNote
If you choose to edit any of the bootlist files, do not add a blank line
within the file. os9gen stops reading lines when it encounters a blank
line.

Most utilities have a -z option that can be used with the bootlist files. A
convenient way to verify that all the modules in your bootlist exist and
have valid CRCs, is to execute ident -qz=bootlists/xxx.bl from
the root of the CPU’s port directory (MWOS/OS9/68040/PORTS/
MVME162). To add modules to the boot, simply un-comment the line by
56 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
removing the asterisk (*) at the beginning of the line containing the
reference to the module. To remove the module, add the asterisk (*) in
the first character position on the line. When ready to generate a boot,
use the xxx_bootfile.make makefile to generate a bootfile that
corresponds to the bootlist you have edited in the
CMDS/BOOTOBJS/BOOTFILES directory. You may also use the os9gen
command as described later in this chapter.

The following BOOTLISTS/rom.bl file is the bootlist used for building the
boot contained in the ROM image supplied with the MVME162 BLS.

NoteNote
.stb modules named in the bootlists are only available to OEM package
customer that have rebuilt the appropriate modules from source.

** Bootlist for the MVME162
**
** Pathlists are relative to the MWOS/OS9/68040/PORTS/MVME162 or machine
** directories based on and parallel to the MVME162 Port directory.
** NOTE: .stb modules are only available when building modules from SRC.
** NOTE: remove/add leading comment "*" to add/remove modules in the OS-9 boot
*

The kernel and IOMan sections allow you to choose one of the four
kernels available. The kernel is available in a standard and atomic
version.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 for 68K Processors Technical Manual for more
information on the differences between the kernels.

With each kernel, you can select the original colored memory allocator
or a newer buddy allocator that allocates memory in powers of two. For
example, if you ask for 33KB of memory, the system would actually
OS-9 for 68K Processors BLS Reference 57

4 Boot and ROM Customizing
allocate 64KB to the process. Most projects requiring the atomic kernel
can be developed under the development kernel with its enhanced
debugging and protection capabilities and then moved to an atomic
based system once the code is known to function properly. Most users
use the OS-9 Unified I/O system to communicate with peripherals and
must include the IOMAN matching the kernel in use. Choose one kernel
and matching IOMAN.
*
* OS-9 Kernel - select one variant:
* All modules named: kernel
*
* Development kernel - Standard memory allocator
../../../68040/CMDS/BOOTOBJS/dker040s
*../../../68040/CMDS/BOOTOBJS/STB/dker040s.stb
* Development kernel - Buddy memory allocator
*../../../68040/CMDS/BOOTOBJS/dker040b
*../../../68040/CMDS/BOOTOBJS/STB/dker040b.stb
* Atomic kernel - Standard memory allocator
*../../../68040/CMDS/BOOTOBJS/aker040s
*../../../68040/CMDS/BOOTOBJS/STB/aker040s.stb
* Atomic kernel - Buddy memory allocator
*../../../68040/CMDS/BOOTOBJS/aker040b
*../../../68040/CMDS/BOOTOBJS/STB/aker040b.stb
*
* Ioman: select one to match selected kernel above:
*
../../../68000/CMDS/BOOTOBJS/ioman_DEV
*../../../68000/CMDS/BOOTOBJS/STB/ioman_DEV.stb
*../../../68000/CMDS/BOOTOBJS/ioman_ATOM
*../../../68000/CMDS/BOOTOBJS/STB/ioman_ATOM.stb
*

58 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Init Module

A selection of init modules are created by the makefiles for the port.
Review the contents of the init modules and adjust the fields to match
your requirements. The fields of the init modules are generally
modified by adjusting the values in the systype.d file and remaking
the init module. On resident OS-9 for 68K machines, the contents of
the init module can be viewed and modified using the moded utility.
The init modules included are those used by the initial bootable
media for floppy (d0), hard disk (h0), tape, and ROM boots. Select only
one init module.
*
* Init module: Select ONLY one.
* init_dd: Init module with /DD initial disk device and runs sysgo
* init_h0: Init module with /h0 initial disk device and runs sysgo
* init_d0: Init module with /D0 initial disk device and runs sysgo
* init_tape: Init module with /DD initial disk device and runs tapestart
* init_rom: Init module with NO initial disk device and runs sysgo
*
CMDS/BOOTOBJS/INITS/init_dd
*CMDS/BOOTOBJS/INITS/init_h0
*CMDS/BOOTOBJS/INITS/init_d0
*CMDS/BOOTOBJS/INITS/init_tape
*CMDS/BOOTOBJS/INITS/init_rom
OS-9 for 68K Processors BLS Reference 59

4 Boot and ROM Customizing
Customization Modules

The following customization modules enable you to include caching for
a CPU board (cache040), process address space protection (SSM),
enable bus snooping (Snoopxxx), and use a variety of OS-9 P2
modules. The selected modules must also be included in the init
module’s P2 initialization list. Modules may be named in the init
module that are not actually in the boot, enabling you to change the
boot without changing an init module. The Atomic kernel does not
support the SSM module. Choose all that are appropriate.
*
* Customization modules:
*
* Snooper Circuit Enable Module
* (if not present, the snooper is not enabled!)
*
CMDS/BOOTOBJS/snoop162
*CMDS/BOOTOBJS/STB/snoop162.stb
*
* Cache Control module
* (If not present, cache is disabled!)
*
../../../68040/CMDS/BOOTOBJS/cache040
*../../../68040/CMDS/BOOTOBJS/STB/cache040.stb
*
* MMU Control module
*
* ssm040 provides write-thru caching in supervisor state,
* ssm040_cbsup provides copy-back caching in supervisor state
* User state cache mode default (both versions) is write-thru,
* and this can be over-ridden via the CacheList entries in systype.d
*
*../../../68040/CMDS/BOOTOBJS/ssm040
../../../68040/CMDS/BOOTOBJS/ssm040_cbsup
*../../../68040/CMDS/BOOTOBJS/STB/ssm040.stb
*
* FPSP/FPU Math emulation modules
*
* FPSP provides 68681/68682 compatibility for the 68040 CPU.
* FPSP is specifically for the 68040 and should not be used with
* 68040Ec and 680040LC processors.
* FPU is a general purpose math emulation module. It provides basic
* float and double support as required by the C libraries.
*
*../../../68040/CMDS/BOOTOBJS/fpsp040
*../../../68040/CMDS/BOOTOBJS/STB/fpsp040.stb
../../../68000/CMDS/BOOTOBJS/fpu
*../../../68000/CMDS/BOOTOBJS/STB/fpu.stb
60 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Clock Modules

The tkxxx module is a driver providing the system with a periodic
interrupt generator. The ticker is required for system time-slicing, sleep
times, system date/time, and statistics information. The rtclock
(rtcxxx) module is a driver used to access the system’s time of day
clock. Generally the time of day clock is a battery-backed chip from
which the system’s time is set upon reset or power up. Some systems
do not have rtcxxx modules.
*
* System clock module:
* System ticker hardware driver
*
CMDS/BOOTOBJS/tk162
*CMDS/BOOTOBJS/STB/tk162.stb
*
* Battery backed time of day chip driver
* Real Time Clock module named: rtclock
* rtc162: rtclock module for MVME162
*
CMDS/BOOTOBJS/rtc162
*CMDS/BOOTOBJS/STB/rtc162.stb

SCF and Pipeman

The following section includes the Serial Character File manager (SCF)
and Pipeman.

The null driver is used with the nil descriptor for SCF redirection to
/nil and with Pipeman as the driver for the /pipe devices.

The pipe module is the standard descriptor for unnamed pipes used by
the shell. It uses the default buffer size.

The serial ports section in the following code contains the scxxx driver
and descriptors describing the serial ports on the board. term is
generally the same port as used by RomBug.

The tx descriptors are generally used for terminals while px
descriptors are used for printers or devices requiring no line editing.
OS-9 for 68K Processors BLS Reference 61

4 Boot and ROM Customizing
Some boards have parallel ports. The drivers are generally named
scpxxx, with the descriptor named p. Choose SCF along with all
required drivers and descriptors.
*
* Sequential Character
* File Managers, Drivers and Descriptors:
* scf: Serial Character File Manager
* null: Null Driver
* nil: Null Driver’s device descriptor
* pipeman: Pipe File Manager (used Null Driver)
* pipe: Pipe device descriptor
*
../../../68000/CMDS/BOOTOBJS/scf
*../../../68000/CMDS/BOOTOBJS/STB/scf.stb
../../../68000/CMDS/BOOTOBJS/null
../../../68000/CMDS/BOOTOBJS/nil
../../../68000/CMDS/BOOTOBJS/pipeman
*../../../68000/CMDS/BOOTOBJS/STB/pipeman.stb
../../../68000/CMDS/BOOTOBJS/pipe
*
* SCF Serial port Drivers and Descriptors
*
CMDS/BOOTOBJS/sc162
*CMDS/BOOTOBJS/STB/sc162.stb
CMDS/BOOTOBJS/term
CMDS/BOOTOBJS/t1
CMDS/BOOTOBJS/p1

Some boards such as the MVME167 also have parallel ports available.
This example shows the driver and descriptor lines for the MVME167.
*
* parallel printer port
*
CMDS/BOOTOBJS/scp167
CMDS/BOOTOBJS/p

An example peripheral VME serial board is to be included in the
system. Its driver and descriptors are included here with the onboard
SCF devices. (These lines are not included in the mvme162 rom.bl
bootlist.)
*
* MVME335 Serial Peripheral board
*
../../../68000/PORTS/MVME335/CMDS/BOOTOBJS/sc335
../../../68000/PORTS/MVME335/CMDS/BOOTOBJS/t10
../../../68000/PORTS/MVME335/CMDS/BOOTOBJS/t11
../../../68000/PORTS/MVME335/CMDS/BOOTOBJS/t12
../../../68000/PORTS/MVME335/CMDS/BOOTOBJS/t13
62 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
RBF

The next section includes the Random Block File manager (RBF),
drivers and descriptors. The RAM driver and r0 descriptors create a
RAM disk of varying sizes. The dd_r0 is the same device as r0 but
with the device name /dd.

You may choose to load the RAM driver in the boot but load the r0
descriptors from disk after the machine is booted. This allows loading
r0 descriptors for different sized RAM disks without needing to remake
the boot. The rom.bl bootlist contains an r0 and dd_r0 descriptor. The
init module is set to use /dd. Once the networking has been started on
the target, the /dd/SYS directory can be used to store termcap,
errmsg, and other reference files normally looked for on the default
device.

The next section is for loading the low level SCSI host adapter driver.
The scsixxx driver is used by both RBF and SBF high level SCSI
drivers to access peripherals on the SCSI bus.

External peripheral cards such as the MVME320 or MVME327 might be
included in this area of the bootlist. Select all that are appropriate.
OS-9 for 68K Processors BLS Reference 63

4 Boot and ROM Customizing
**
* Random Block File Manager,
* Drivers and Descriptors:
*
../../../68000/CMDS/BOOTOBJS/rbf
*../../../68000/CMDS/BOOTOBJS/STB/rbf.stb
../../../68000/CMDS/BOOTOBJS/ram
CMDS/BOOTOBJS/r0
CMDS/BOOTOBJS/dd_r0
*CMDS/BOOTOBJS/r0_3m
*CMDS/BOOTOBJS/dd_r0_3m
*
* SCSI Controller
*
../MVME162/CMDS/BOOTOBJS/scsi162
*../MVME162/CMDS/BOOTOBJS/STB/scsi162.stb
*
* SCSI Hard Drive Support
* RBVCCS driver and descriptors
*
../../../68000/CMDS/BOOTOBJS/rbvccs
*../../../68000/CMDS/BOOTOBJS/STB/rbvccs.stb
CMDS/BOOTOBJS/VCCS/h0
CMDS/BOOTOBJS/VCCS/h0fmt
*
* RBSCCS driver and descriptors (obsolete)
*
*../../../68000/CMDS/BOOTOBJS/rbsccs
*../../../68000/CMDS/BOOTOBJS/STB/rbsccs.stb
*CMDS/BOOTOBJS/SCCS/h0
*CMDS/BOOTOBJS/SCCS/h0fmt
*
* SCSI Floppy Drive Support
* RBTEAC driver and descriptors
*
*../../../68000/CMDS/BOOTOBJS/rbteac
*../../../68000/CMDS/BOOTOBJS/STB/rbteac.stb
*CMDS/BOOTOBJS/TEACFC1/d0
64 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
SBF

The Tape Manager section adds the Serial Block File manager (SBF) to
the boot. A variety of SCSI tape drives are supported. Each of the
drivers requires the scsixxx low level SCSI driver be available in
memory for the device to be initialized.

* Tape Manager:
*
*../../../68000/CMDS/BOOTOBJS/sbf
*../../../68000/CMDS/BOOTOBJS/STB/sbf.stb
*
* Tape Drivers and Descriptors
*
* Archive Viper/DAT drives
*
*../../../68000/CMDS/BOOTOBJS/sbviper
*../../../68000/CMDS/BOOTOBJS/STB/sbviper.stb
*CMDS/BOOTOBJS/VIPER/mt0
*CMDS/BOOTOBJS/VIPER/mt1
*CMDS/BOOTOBJS/VIPER/dat
*
* TEAC Cassette
*
*../../../68000/CMDS/BOOTOBJS/sbteac
*../../../68000/CMDS/BOOTOBJS/STB/sbteac.stb
*CMDS/BOOTOBJS/TEACMT2/mt0
*
* Exabyte drive
*
*../../../68000/CMDS/BOOTOBJS/sbgiga
*../../../68000/CMDS/BOOTOBJS/STB/sbgiga.stb
*CMDS/BOOTOBJS/EXABYTE/mt2
*

OS-9 for 68K Processors BLS Reference 65

4 Boot and ROM Customizing
Initial System Process

The next section selects the first process executed by the system. The
boot’s init module must reflect the name of the module selected
here. Sysgo is a general purpose program that sets up the initial CMDS
directory and tries to execute a startup file with the help of mshell.
tapestart and shell are used by the tape distribution media to start
the system and then create a system RAM disk from the second file on
a tape. Including shell or mshell in the boot is useful when there
is not a device from which to load the shell module at boot time. The
init module can be modified to use shell or mshell as the initial
process and to execute a startup file or sequence without using
sysgo.

* Initial system process:
* sysgo: runs SYS/startup script, (re)forks mshell
* sysgo_nodisk: forks mshell (no startup file run)
* sysgo_tsmon: runs SYS/startup script, chains to tsmon
* sysgo_shell: runs startup script, (re)forks shell
* compatible with earlier OS-9 versions
* NOTE: sysgo modules require mshell except sysgo_shll
* which requires shell.
* NOTE: the init module can be configured to use shell
* or mshell as the initial process instead of sysgo.
* mshell: extended functionality shell (standard)
* shell: origininal small shell
* tapestart: used in tape based initial shipping boots
*
../../../68000/CMDS/BOOTOBJS/sysgo
*../../../68000/CMDS/BOOTOBJS/sysgo_nodisk
*../../../68000/CMDS/BOOTOBJS/sysgo_tsmon
*../../../68000/CMDS/BOOTOBJS/sysgo_shell
../../../68000/CMDS/mshell
*../../../68000/CMDS/shell
*../../../68000/CMDS/tapestart
66 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Additional Modules and Utilities

This area includes additional modules such as the I/O and Math shared
trap libraries. csl is used for Ultra C libraries. cio, math, and math881
are used with programs compiled with the original Microware C
Compiler and libraries. See the Ultra C/C++ documentation for more
information on these modules. Additional utilities and applications may
be added to the boot. Adding additional modules is particularly useful
when using BootP to boot diskless systems or as in this case, when
building an embedded boot for inclusion in the ROM.
**
* Additional system Support modules can be added here.
* csl: C Shared Library for Ultra C compiled binaries
* cio: C I/O library for Microware C compiled binaries
* math881: Math881 simulation library for Microware C
* compiled binaries
../../../68020/CMDS/csl
*../../../68020/CMDS/cio
*../../../68020/CMDS/math881
*
* OS Utilitities used during System configuration
* See utilities manual for usage.
*
../../../68000/CMDS/attr
../../../68000/CMDS/break
*../../../68000/CMDS/chown
*../../../68000/CMDS/copy
../../../68000/CMDS/date
*../../../68000/CMDS/dcheck
../../../68000/CMDS/deiniz
*../../../68000/CMDS/del
*../../../68000/CMDS/deldir
../../../68000/CMDS/devs
../../../68000/CMDS/dir
../../../68000/CMDS/diskcache
*../../../68000/CMDS/dsave
*../../../68000/CMDS/dump
*../../../68000/CMDS/echo
*../../../68000/CMDS/fixmod
../../../68000/CMDS/format
../../../68000/CMDS/free
*../../../68000/CMDS/frestore
*../../../68000/CMDS/help
../../../68000/CMDS/ident
../../../68000/CMDS/iniz
*../../../68000/CMDS/kermit
*../../../68000/CMDS/link
../../../68000/CMDS/list
*../../../68000/CMDS/lmm
OS-9 for 68K Processors BLS Reference 67

4 Boot and ROM Customizing
../../../68000/CMDS/load

../../../68000/CMDS/makdir

../../../68000/CMDS/mdir

../../../68000/CMDS/mfree
*../../../68000/CMDS/os9gen
*../../../68000/CMDS/p2init
../../../68000/CMDS/partition
../../../68000/CMDS/pd
../../../68000/CMDS/printenv
../../../68000/CMDS/procs
../../../68000/CMDS/rename
../../../68000/CMDS/save
../../../68000/CMDS/setime
../../../68000/CMDS/tar
../../../68000/CMDS/tmode
*../../../68000/CMDS/tsmon
../../../68000/CMDS/unlink

Networking Modules

The remaining sections add networking modules to the boot. These
modules can also be loaded from disk using the loadspf shell script in
the SYS directory. The first section is the majority of the hardware
independent system modules used in SoftStax.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information SoftStax and the NFS Client package, see
Chapter 5.

*
* SPF/Lancom Networking
*
* System MBuf Service
*
../../../68020/CMDS/BOOTOBJS/SPF/sysmbuf
*../../../68020/CMDS/BOOTOBJS/SPF/STB/sysmbuf.stb
*
* Pseudo Keyboard FM/Driver/Descriptors
* pkman: File Manager
* pkdvr: Driver
* pk: pkdvr descriptor
* pks: pkdvr (scf) descriptor
* NOTE: all required with Telnet and other applications needing
68 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
* Pseudo Keyboard fuctionality
*
../../../68020/CMDS/BOOTOBJS/SPF/pkman
*../../../68020/CMDS/BOOTOBJS/SPF/STB/pkman.stb
../../../68020/CMDS/BOOTOBJS/SPF/pkdvr
*../../../68020/CMDS/BOOTOBJS/SPF/STB/pkdvr.stb
../../../68020/CMDS/BOOTOBJS/SPF/pk
../../../68020/CMDS/BOOTOBJS/SPF/pks
*
* SPF/Lancom FM/Drivers/Descriptors
*
* SPF/Lancom Protocol Drivers/Descriptors
* spf: SoftStax File Manager
* spip: SPF IP driver module
* ip0: spip descriptor module
* sptcp: SPF TCP driver module
* tcp0:: sptcp descriptor module
* spudp: SPF UDP driver module
* udp0: spudp descriptor module
* spraw: SPF RAW driver module
* raw0: spraw descriptor module
* sproute: SPF Routing driver module
* route0: sproute descriptor module
*
../../../68020/CMDS/BOOTOBJS/SPF/spf
*../../../68020/CMDS/BOOTOBJS/SPF/STBspf.stb
../../../68020/CMDS/BOOTOBJS/SPF/spip
*../../../68020/CMDS/BOOTOBJS/SPF/STB/spip.stb
../../../68020/CMDS/BOOTOBJS/SPF/ip0
../../../68020/CMDS/BOOTOBJS/SPF/sptcp
*../../../68020/CMDS/BOOTOBJS/SPF/STB/sptcp.stb
../../../68020/CMDS/BOOTOBJS/SPF/tcp0
../../../68020/CMDS/BOOTOBJS/SPF/spudp
*../../../68020/CMDS/BOOTOBJS/SPF/STB/spudp.stb
../../../68020/CMDS/BOOTOBJS/SPF/udp0
../../../68020/CMDS/BOOTOBJS/SPF/spraw
*../../../68020/CMDS/BOOTOBJS/SPF/STB/spraw.stb
../../../68020/CMDS/BOOTOBJS/SPF/raw0
../../../68020/CMDS/BOOTOBJS/SPF/sproute
*../../../68020/CMDS/BOOTOBJS/SPF/STB/sproute.stb
../../../68020/CMDS/BOOTOBJS/SPF/route0
*
* Ethernet Support Driver/Descriptor
* Required for sp162/spie0 below
* spenet: Ethernet protocol driver
* enet: spenet descriptor
*
../../../68020/CMDS/BOOTOBJS/SPF/spenet
../../../68020/CMDS/BOOTOBJS/SPF/enet
*

OS-9 for 68K Processors BLS Reference 69

4 Boot and ROM Customizing
Networking Configuration Modules

These modules are used to configure your system for the local network
environment and the specific machine modules used to connect the
network. Choose the proper inetdb module.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about building an inetdb module for your network,
see Chapter 5.

The example shows adding an ethernet driver to the boot. Other
communication drivers can also be included for SLIP or PPP networking
connections. The inetdb2 module is generally used to specify
information about the particular machine, such as IP addresses and
hostname.
* Network specific modules
* netdb_local: resolve network info from inetdb modules
* netdb_dns: resolve from inetdbs then use DNS
* inetdb: local network info module
* NOTE: often inetdb is made with just network info so
* it can be used in all machines. inetdb2 etc. modules
* are created for machine specific info.
*
*../../../68020/CMDS/BOOTOBJS/SPF/netdb_local
../../../68020/CMDS/BOOTOBJS/SPF/netdb_dns
../../../68020/CMDS/BOOTOBJS/SPF/inetdb
*
* System specific modules
*
* inetdb2: Machine lancom configuration Module
* sp162: Ethernet Hardware Driver
* spie0: Ethernet Hardware Descriptor
*
*CMDS/BOOTOBJS/SPF/inetdb2
../MVME162/CMDS/BOOTOBJS/SPF/sp162
../MVME162/CMDS/BOOTOBJS/SPF/spie0
70 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Networking Utilities

The following section adds the SoftStax and LAN Communications Pak
Client utilities to support remote connections with the system. These
include the status program, resident configuration tools, telnet, ftp,
and various daemons. On systems with a disk available, these utilities
are generally not placed in the boot; instead they are loaded from the
CMDS directory automatically by the shell as they are needed.
*
* SPF/Lancom Utilities
*
* SPF Startup/Configuration Utilitities
* mbinstall: install sysmbuf p2 module
* ipstart: start spf system
* ifconfig: configure spf/lancom devices
* route: control/display routing entries
* ndbmod: build/modify Inetdb module
* netstat: display lancom information
* idbdump: display inetdb modules
* hostname: set/display system hostname
*
../../../68020/CMDS/mbinstall
../../../68020/CMDS/ipstart
*../../../68020/CMDS/ifconfig
../../../68020/CMDS/route
../../../68020/CMDS/ndbmod
../../../68020/CMDS/netstat
../../../68020/CMDS/idbdump
../../../68020/CMDS/hostname
*

OS-9 for 68K Processors BLS Reference 71

4 Boot and ROM Customizing
* SPF Applications
* arp:
* bootpd: Bootp server
* ftp: Ftp user program
* ftpd: FTP daemon (or use inetd)
* ftpdc: FTP daemon child (use w/ftpd or inetd)
* inetd: Master Daemon
* ping: User "system up?" utility
* routed: routing Daemon
* telnet: Telnet user program
* telnetd: Telnet daemon (or use inetd)
* telnetdc: Telnet daemon child (use w/telnetd or inetd)
* tftpd: TFTP server daemon
* tftpdc: TFTP server daemon child (required w/tftpd)
*../../../68020/CMDS/arp
*../../../68020/CMDS/bootpd
../../../68020/CMDS/ftp
../../../68020/CMDS/ftpd
../../../68020/CMDS/ftpdc
*../../../68020/CMDS/inetd
*../../../68020/CMDS/ping
../../../68020/CMDS/routed
../../../68020/CMDS/telnet
../../../68020/CMDS/telnetd
../../../68020/CMDS/telnetdc
*../../../68020/CMDS/tftpd
*../../../68020/CMDS/tftpdc
72 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
NFS

The last section includes the system modules and utilities used to
support NFS client and NFS server functionality on the OS-9 target
system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 5 for more information about creating the descriptors
loaded in these sections.

**
* NFS Client Utilities
* nfsc: nfs client daemon (required with nfs FM)
* mount: mount nfs served devices
* rpcdbgen: generate rpcdb module
* rpcdump: display rpcdb contents
* nfsstat: nfs status program
* rpcinfo: display rpc information from specific calls
*
*../../../68020/CMDS/nfsc
*../../../68020/CMDS/mount
*../../../68020/CMDS/rpcdbgen
*../../../68020/CMDS/rpcdump
*../../../68020/CMDS/nfsstat
*../../../68020/CMDS/rpcinfo
*
* NFS Server application Modules
* exportfs: export file systems
* portmap: port mapping daemon (required)
* nfsd: nfs daemon (required)
* mountd: mount request servicing daemon
* showmount: show systems that have mounted locally exported devices
*
*../../../68020/CMDS/exportfs
*../../../68020/CMDS/portmap
*../../../68020/CMDS/nfsd
*../../../68020/CMDS/mountd
*../../../68020/CMDS/showmount
OS-9 for 68K Processors BLS Reference 73

4 Boot and ROM Customizing
Making Boots

There are three basic ways of booting the OS-9 operating system.

The first is to use one of several external sources to load the OS-9 Boot
into memory. The bootp network booter, hard disk, floppy, and tape
booters are examples of external source booters available in the OS-9
PROM.

The second is to use the embedded boot concept where the OS-9
system image is contained in the ROM/FLASH image on the board.
One such image is included in the PROMs provided with BLS
packages.

The third method is to load a boot image via the console port and
ROMBUG. This is the most time consuming method if the image is
loaded via the console port.

I/O based Booters

The d0_bootfile.make, h0_bootfile.make, and
viper_tape_bootfile.make makefiles located in the
<port>/BOOTS directory are used to create OS-9 bootfiles in the
CMDS/BOOTOBJS/BOOTFILES subdirectory. The same makefile can be
used to ident the boot you just made by typing the command
os9make -f=h0_boofile.make ident. A bootfile is the image of
an OS9Boot. Once it is created, there are a variety of methods used to
make the file available to the target machine.

Hard disk boot os9gened RBF boot disk

Floppy boot os9gened RBF boot disk

Tape boot tapegened SBF boot tape

Network boot OS-9, Windows, or UNIX BootP server
74 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Hard Disk Boot

Hard Disk Boot Method 1

Step 1. Create the boot by modifying the <port>/BOOTLISTS/h0.bl bootlist
file to select the desired modules to be part of your OS9Boot image.

Step 2. Change into the BOOTS directory and enter os9make
-f=h0_bootfile.make. This creates the bootfile image
<port>/CMDS/BOOTOBJS/BOOTFILES/h0.bf.

Step 3. Once the image is built, ftp the file to the target system’s hard disk root
directory. Be sure to use binary mode when ftping the file.

Step 4. Use os9gen on the target machine to “gen” the OS9Boot on the hard
drive using the following command:

os9gen /h0fmt -eb=<buffer size> h0.bf

NoteNote
<buffer size> should be large enough to hold the entire bootfile.

NoteNote
The use of the format enabled descriptor h0fmt is required in order to
write the sector 0 (zero) bootrecord information as part of the OS9gen
procedure of creating the OS9Boot on the drive.
OS-9 for 68K Processors BLS Reference 75

4 Boot and ROM Customizing
Hard Disk Boot Method 2

Step 1. Transfer the files used for creating the boot to the target machine as
described in Chapter 3.

Step 2. Perform the os9gen command on the /h0fmt device.

Step 3. From the root directory (/h0) execute the following command:

os9gen /h0fmt -eb=<buffer size> -z=bootlists/h0.bl

NoteNote
Be sure to have a secondary means of booting the target machine in
the event the new boot is flawed and fails to boot the system.

The ROM boot provided in the BLS PROMs is a viable backup boot
method and allows access to an attached SCSI hard drive with a SCSI
ID of 0 (zero).
76 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Floppy Boot

From a running OS-9 for 68K machine you can create a floppy disk
boot. The booter attempts to read a number of OS-9 RBF disk
formats. However, the OS-9 Universal format is recommended since it is
currently the default used by most /d0 device descriptors. The following
examples show two methods of making a boot on floppy disk.

Step 1. Modify the <port>/BOOTFILES/d0.bl bootlists as desired.

Step 2. Change to the <port>/BOOTS directory and execute the following
command:

make -f=d0_bootfile.make

Step 3. Ftp the <port>/CMDS/BOOTOBJS/BOOTFILES/d0.bl file to a
running OS-9 machine using binary transfer mode and placing the file
in the /h0/cmds/bootobjs/bootfiles directory as d0.bf

Step 4. From the OS-9 machine, on the root directory, execute the following
command:

os9gen -eb=<buffer size> /d0 CMDS/BOOTOBJS/BOOTFILES/d0.bf

or alternatively, if you have moved the files needed for creating a boot to
the target system, you can enter the command:

os9gen /d0 -eb=<buffer size> -z=bootlists/d0.bl

In either case, the boot put on the floppy may be for a diskless system,
disk-based system using /d0 or /h0 as the initial system disk, or a
system using an NFS mounted disk for the system disk.
OS-9 for 68K Processors BLS Reference 77

4 Boot and ROM Customizing
OS9Gen Create and Link the OS9Boot File

Syntax

os9gen [<opts>] <devname> {<path>}

Description

os9gen creates and links the OS9Boot file required on any disk from
which OS-9 for 68K is to be bootstrapped. Following are some
examples of how you can use os9gen:

• Make a copy of an existing boot file.

• Add modules to an existing boot file.

• Create an entirely new boot file for a different system.

To use the os9gen utility, type os9gen and the name of the device on
which to install the OS9Boot file. os9gen creates a working file called
TempBoot on the device specified. Each file specified on the command
line is opened and copied to the TempBoot file.

NoteNote
Only super users (0.n) may use this utility. Also, you can only use
os9gen on format-enabled devices.

After all input files are copied to TempBoot, any existing OS9Boot file
on the target device is renamed OldBoot. If an OldBoot file is already
present, os9gen deletes it before renaming OS9Boot.

TempBoot is then renamed OS9Boot. Its starting address and size are
linked in the disk’s identification sector (LSN 0) for use by the OS-9
bootstrap firmware.
78 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Options

-? Display the options, function, and
command syntax of os9gen.

-b=<num> Assign <num>k of memory for os9gen.
Default memory size is 4K.

-e Extended Boot. Allows you to use large
(greater than 64K) and/or
non-contiguous files.
Note: Bootstram ROMS must support
this feature.

-q=<file> Quick Boot. Set sector zero pointing to
<file>.

-r Remove the pointer to the boot file. This
file is not deleted.

-x Search the execution directory for
pathlists.

-z Read the file names from standard input.

-z=<file> Read the file names from <file>.

If your boot file is non-contiguous or larger than 64KB, use the -e
option.

NoteNote
Your bootstrap ROMs must support this feature. If they do not, you
should not use this option.

If you use the -z option, os9gen first uses the files specified on the
command line and then the file names from its standard input, or from
the specified pathlist, one pathlist per line. If the names are entered
manually, no prompts are given and the end-of-file key (usually
<escape>) is used to terminate input.
OS-9 for 68K Processors BLS Reference 79

4 Boot and ROM Customizing
To determine what modules are necessary for your boot file, use the
ident utility with the OS9Boot file that came with your system.

The -q option updates information in the disk’s Identification Sector by
directing it to point to a file already contained in the root directory of the
specified device.

The -q option is useful when restoring the OldBoot file as the valid
boot on the disk. os9gen renames the specified file to be OS9Boot and
saves the current boot as described previously.

The -r option removes the pointer to the boot file but does not delete
the file. This is useful if you delete the bootfile from your disk (using the
del command). Deleting the bootfile from the file structure does not
remove the bootfile pointers from the disk’s Identification Sector. You
can also use it to make a disk non-bootable without deleting the actual
bootfile.

Examples

This command manually installs a boot file on device /d1, which is an
exact copy of the OS9Boot file on device /d0.

$ os9gen /d1 /d0/os9boot

The following three methods manually install a boot file on device /d1.
The boot file on /d1 is a copy of the OS9Boot file on device /d0 with
the addition of modules stored in the files /d0/tape.driver and
/d2/video.driver:

Manual Bootfile Installation Method 1
$ os9gen /d1 /d0/os9boot /d0/tape.driver /d2/video.driver

Manual Bootfile Installation Method 2
$ os9gen /d1 /d0/os9boot -z
/d0/tape.driver
/d2/video.driver
[ESCAPE]
80 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Manual Bootfile Installation Method 3
$ os9gen /d1 -z
/d0/os9boot
/d0/tape.driver
/d2/video.driver
[ESCAPE]

You can automatically install a boot file by building a bootlist file and
using the -z option to either redirect os9gen standard input or use the
specified file as input:

$ build /d0/bootlist Create file bootlist
? /d0/os9boot Enter first file name
? /d0/tape.driver Enter second file name
? /d2/video.driver Enter third file name
? * V1.2 of video driver

 * Comment line
? [RETURN] Terminate build
$ os9gen /d1 -z </d0/bootlist Redirects standard input
$ os9gen /d1 -z=/d0/bootlist Reads input from pathlist

NoteNote
os9gen treats any input line preceded by an asterisk (*) as a
comment.

The following command makes the OldBoot file the current boot and
saves the current OS9Boot file as OldBoot:

$ os9gen /d1 -q=oldboot

NoteNote
os9gen is an OS-9 hosted utility.
OS-9 for 68K Processors BLS Reference 81

4 Boot and ROM Customizing
Tape Booting

An OS-9 for 68K machine can be used to create a tape boot. The tape
boot can optionally initialize a RAM disk from an image of the disk
created prior to creating the tape. The tapegen utility is used to create
the boot tape and the tapestart utility is used to initialize the RAM
disk from the tape. The init_tape init module uses this method.

Tape startup Sequence

The tape booting procedure operates in a manner similar to normal disk
booting. The tapeboot code in the supplied ROMs reads a header
block (equivalent to Sector 0 of a disk) from the tape. This block
contains the location and size of the bootstrap file on the tape. It allows
the booting code to locate and read the bootstrap file into system
memory.

The format of the boot tape header block also allows the specification of
additional files on the tape for application-specific purposes. In the
standard distribution media, this feature allows the RAM disk image
to be stored on tape. When the system is booted, an application
program is executed. This application program reads the RAM disk
image from tape and writes it into the RAM disk itself.

Supplied Utilities

Two utility programs are supplied on the distribution media to support
the concepts described above. These utilities are tapegen and
tapestart.

The tapegen utility creates the bootable tape. tapegen is a standard
utility performing a function similar to the os9gen utility. Both utilities
place the bootstrap file onto the media and mark the media
identification block with information regarding the bootstrap file. In
addition, tapegen can optionally place initialized data on the tape for
application-specific purposes.
82 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
To use the initialized data feature, use the following procedure:

Step 1. Create a RAM disk descriptor that sets the RAM disk size as required
on the target machine.

Step 2. Load the descriptor.

Step 3. Initialize the descriptor with iniz.

Step 4. Fill the RAM disk with the files desired on the target machine.

Step 5. Save the raw image of the RAM disk to tape.

Using this method, startup script files, termcap, and errmsg files
are available on a target where there is no other disk installed. The -i
option of tapegen is then used to point to the RAM disk on the host.

NoteNote
The target boot must contain the ram driver and a descriptor with a
device size equal to that of the initialized RAM disk image on tape.
When edition #24 or greater of the RAM driver is used with the target
boot, the descriptor must also be format enabled as well.
OS-9 for 68K Processors BLS Reference 83

4 Boot and ROM Customizing
tapegen Put Files on Tape

Syntax

tapegen [<opts>] <filename> <filename>

Description

The tapegen utility creates the bootable tape. tapegen is a
standard utility performing a function similar to the os9gen utility. Both
utilities place the bootstrap file onto the media and mark the media
identification block with information regarding the bootstrap file. In
addition, tapegen can optionally place initialized data on the tape for
application-specific purposes.

Options

-? Displays the options, function, and
command syntax of tapegen.

-b=<bootfile> Installs an OS-9 boot file.

-bz Reads boot module names from
standard input.

-bz=<bootlist> Reads boot module names from the
specified bootlist file.

-c Checks and displays header information.

-d=<dev> Specifies the tape device name. The
default is /mt0.

-o Takes the tape drive off-line when
finished.

-t=<target> Specifies the name of the target system.

-i=<file> Installs an initialized data file on the
tape. This is usually a RAM disk image.

-v=<volume> Specifies the name of the tape volume.

-z Reads filenames from standard input.
84 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
-z=<file> Reads filenames from the specified file.

Examples

The following example makes a bootable tape. The disk image is
derived from the /dd device.

$ tapegen -b=OS9Boot.tape -i=/dd@
“-v=OS-9/68K Boot Tape” -t=MySystem

This example makes a bootable tape with no initialized data file. The
header information is displayed after writing the tape.

$ tapegen -b=OS9Boot.h0 -c

NoteNote
tapegen is an OS-9 hosted utility.
OS-9 for 68K Processors BLS Reference 85

4 Boot and ROM Customizing
tapestart Start System from Tape

Syntax

tapestart [<opts>] [<device name>] [<opts>]

Description

The tapestart utility supplied on the distribution media is an
application-specific program used to initialize the RAM-disk contents.
For tape booting configurations, tapestart allows the RAM disk to be
fully initialized prior to forking the standard SysGo module.

Function

tapestart reads the header block from the tape, determines the
position and size of the initialized data file, and copies this data to the
specified device.

NoteNote
When creating boot tapes with initialized data files and using the
supplied tapestart utility, the size of the initialized data file must be
the same as the size of the device to which the data is being written.

To use the tapestart utility, type tapestart followed by any desired
options.

Options

<device name> Specifies the RBF device to initialize.
This defaults to whatever is specified in
the init module.

-? Displays the options, function, and
command syntax of tapestart.
86 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
-d=<tdevname> Specifies the tape device name. The
default is /mt0.

-o Forces the tape drive off-line when
finished.
Note: On some drives, this ejects the
tape.

Examples

The following example writes the initialized data file on /mt0 to the
system’s default device.

$ tapestart

This example writes the initialized data file on /mt2 to /r0.

$ tapestart -d=/mt2 /r0
OS-9 for 68K Processors BLS Reference 87

4 Boot and ROM Customizing
BootP Booting

The target system can be booted from a Windows or UNIX hosted
BootP server if available. The BLS and OEM packages also contain an
OS-9 for 68K Bootstrap Protocol Server (BootP) that enables you to
create a BootP server for your target system from a separate disk
based OS-9 system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Using LAN Communications Pak manual for information
about the OS-9 BootP server and its installation.

Creating the Boot

Use an existing makefile (for example BOOTS\h0_bootfile.make)
and the corresponding bootlist file (for example BOOTLISTS\h0.bl) to
create an appropriate boot for your target system. You can either make
changes directly to an existing bootlist file and then use the
corresponding makefile to build your bootfile, or you can make a copy of
these files (for example copy to bootp_bootfile.make/bootp.bl)
and then make your changes to the new files.

NoteNote
If you choose to create new makefile and/or bootlist files, be sure to
update the following definitions in the new makefile:

• MAKER (new makefile name)

• OFILE (new bootfile name)

• FILES (new bootlist name)
88 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Also update the following definition in BOOTS\makefile:

• TRGTS (add new makefile name)

Once you have created an appropriate boot, move the bootfile to the
directory used by your BootP server.

NoteNote
For TFTP booting, please refer to the Customizing ROM images
section.

Booting the boot

After resetting the target system, select the ie boot menu item to boot
boards such as the MVME162, MVME167, MVME172, and MVME177
using the I82596 Ethernet controller. If automatic booting is desired, the
sequenced order of booters should be entered and the rombug boot
menu disabled through the use of the reconfig command.

In addition, if the debugger is also disabled, upon power up or reset, the
system continues trying the backup sequence forever. Booters may be
specified more than once in the booter preference sequence.
OS-9 for 68K Processors BLS Reference 89

4 Boot and ROM Customizing
Customizing ROM images

Making new or additional ROMs is another method used to modify the
boot on the target board. For developers of ROMed target systems, this
is usually done once the code has been debugged and proven
functional. This is a good way for BLS users to provide an always
present backup boot when the primary boot method is from an
attached hard disk.

Modifying the ROM Bootfile

The ROM Bootfile uses the rom.bl bootlist in your board’s
<port>/BOOTLISTS directory to select files/modules for inclusion in
the boot image.

Makefiles for rebuilding the ROM boot are located in the ROM_CBOOT
directory of your board’s port directory. The makefiles create merged
components in the CMDS/BOOTOBJS/NOBUG or
CMDS/BOOTOBJS/ROMBUG subdirectories of your board’s port directory
depending on whether or not you choose to include rombug in your
ROM image. The example concentrates on the ROMBUG version.

Step 1. Edit the BOOTLISTS/rom.bl file to add or change the modules to
include in your boot. Adjust the size of your boot to the available size of
the PROM/FLASH memory on your board. The ROMBUG section of
the PROM will use the first 128k of ROM space. Therefore, on a board
with 1 Meg of ROM, there will be $E0000 / #917504 bytes of ROM
available for the boot.

Step 2. To determine the size of your boot, change to the root of your board’s
port directory (MWOS/OS9/68040/PORTS/MVME162 for our example
162 system).

Step 3. Use the command os9merge -z=BOOTLISTS/rom.bl >boot.tmp to
create a boot.
90 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Step 4. Look at the size of the file using the dir command.

You can also use os9ident -q -z=BOOTLISTS/rom.bl to quickly identify
modules within your boot.

Step 5. Once you are satisfied with the revised bootlists, change to the
ROM_CBOOT directory and rebuild the ROM image.

os9make -f=rombug.make causes the ROMBUG version of the ROM
image to be rebuilt and placed in the
<PORT>/CMDS/BOOTOBJS/ROMBUG/rombugger file.

The rom_bootfile.make makefile calls the padrom utility to pad the
size of the bootfile to a known size. Adjust the makefile if you wish to
pad to a size different than $E0000 bytes.

The makefile rom_booters generally builds the ROMBUG section of
the ROM image and padroms that section to 128k. The two pieces are
then combined by rombug.make to build the 1 meg ROM image used
in the PROMS provided with the BLS.

The C based rombooter used on the MVME boards will find any number
of modules contiguous with the OS-9 kernel, which must be the first
module in any boot. If a board contains 4 meg of FLASH memory, the
booter would allow a boot of up to 4 meg minus 128k for ROMBUG. If
the FLASH memory was in two separate, noncontiguous banks, the first
bank would set the maximum embedded boot size. However, the
system’s init module could be modified to request that the OS-9 kernel
search the second FLASH bank for additional modules after the kernel
has taken control of the system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Enhanced OS-9 for 68K MVME Board Guide for information
about the layout of each CPU’s RomBug ROMs.

OS-9 for 68K Processors BLS Reference 91

4 Boot and ROM Customizing
initext File

To customize the ROM’s initial startup code, Microware provides a file
called initext.a (initialization extension). This file enables BLS
users to create a bootstrap ROM performing special initialization of the
system during the initial startup of the bootstrap process, without
requiring you to customize and re-make the core of the distributed
bootstrap ROMs.

The majority of users do not need to modify the Initext code installed
in their ROMs. A typical application for this code is initializing custom
hardware that would otherwise interfere with the booting process. For
example, hardware that asserts an interrupt to the CPU on power-up
and must be accessed to clear the interrupt.

The modification of the initext code is optional. If you need to modify
the code, take the following steps to include the modified code in the
ROMs:

Step 1. Examine the supplied initext.a file to gain an insight into when the
code is called and what functions you can perform. This is an actual file
you can modify according to your requirements.

Step 2. Modify initext.a to meet your requirements.

Step 3. Re-make your customized version using one of the make commands. If
your make changes to other modules to be contained in the ROMs,
performing a full make may be required to update those modules. In the
ROM_CBOOT directory you can simply type os9make or you can run
only the version you prefer utilizing one of the following commands.

os9make -f=rom.make

os9make -f=rombug.make

Step 4. Make a new set of boot ROMs or program into the board’s FLASH
memory if available.
92 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the Enhanced OS-9 for 68K MVME Board Guide for more
information.

NoteNote
OEM package customers have many more options for customizing
ROM images.
OS-9 for 68K Processors BLS Reference 93

4 Boot and ROM Customizing
Download Booting

This method is used most often during the development phase of a
project. It requires operator intervention to load the boot code at the
appropriate memory location and time. The sample session provided
below shows downloading S-Records using RomBug’s download
facility.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the RomBug download command see the
Using RomBug manual.

Once the memory for the ml boot has been allocated, the boot may also
be moved into place by using another CPU board in the same
backplane to copy the code into place.

Step 1. At power up or after reset, type g <Return> at the rombug debugger
prompt (assuming it is enabled) to receive the boot menu.

Step 2. Select the Boot Manually Loaded Bootfile Image option by typing ml
<Return>. You are then prompted for the size of the boot file to be
downloaded.
94 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
Step 3. Enter the size of the bootfile. The booter allocates enough memory to
hold the boot and responds with the beginning address of the allocated
memory in the yes/no/quit question displayed below.

BOOTING PROCEDURES AVAILABLE --------------- <INPUT>
Boot from SCSI(SCCS) hard drive ------------ <hs
Boot from Viper tape drive ----------------- <vs>
Boot from Teac SCSI floppy drive ----------- <fs>
Boot from BOOTP i82596 LANC ---------------- <ie>
Boot from BOOTP backplane ------------------ <bp>
Boot from a non-volatile (Static) RAM disk - <sd>
Load Bootfile from ROM --------------------- <lr>
Boot from ROM ------------------------------ <ro>
Boot Manually Loaded Bootfile Image -------- <ml>
Reconfigure the boot system ---------------- <rc>
Restart the system ------------------------- <q>

Select a boot method from the above menu: ml<return>
Enter loadfile size<cr>: 85442<return>

Is the loadfile image ready at 0x8310:
(<yes>/<no>/<quit>)?

Step 4. Press the abort button on the CPU to return to the debugger.
<Aborted>
dn: 00000000 00000000 00000000 00000000 00000005 00000001 FFA009FE 00007000
an: FFA19076 0000422A FFA18400 FFF45004 00008010 00006FF0 00000010 00006F3A
pc: FFA021A0 sr:2704 (--SI-7--Z--)t:OFF msp:FFE10000 usp:00000010 ^isp^
0xFFA021A0 >67F8 beq.b 0xFFA0219A
RomBug:

Step 5. Set .r7 as the default relocation register

RomBug: @7<ret>

Step 6. Load the download memory address into .r7

RomBug: .r7 8310<ret>

Step 7. Set a download I/O delay value of 20 in .d0

RomBug: .d0 20<ret>
OS-9 for 68K Processors BLS Reference 95

4 Boot and ROM Customizing
Step 8. Execute the dl (download) command.

RomBug: dl<ret>
00008400
00008600
00008800

Step 9. At this point, start the download from the host system. The download
starts and displays the address at 512 byte intervals until the final
S-record has been received.

0001C800
0001CA00
0001CC00
0001CE00
0001D000
load done

Step 10. Type g <Return> to resume at the download booter’s prompt. Pressing
<Return> reprints the prompt. Typing y <Return> causes the
download booter to start the code that was downloaded to bring up the
system.

RomBug: g<return>
<ret>
(<yes>/<no>/<quit>)? yes<return>
A valid OS-9 bootfile was found.
-t -np
*
* OS-9/68000 - Version 3.0
* Copyright 1984, 1993 by Microware Systems Corporation
*
* The commands in this file are highly system dependent and
should
* be modified by the user.
*
setime <>>>/term ;* start system clock
 yy/mm/dd hh:mm:ss [am/pm]
Time:
96 OS-9 for 68K Processors BLS Reference

4Boot and ROM Customizing
NoteNote
This booter can also be used in conjunction with other CPU cards on
the VME Bus to load the image at the allocated address rather than
downloading the boot image via ROMBUG.
OS-9 for 68K Processors BLS Reference 97

4 Boot and ROM Customizing
ROM Customization (OEM Package)

The Embedded OS-9 for 68k (OEM) Package includes the ability to
customize the booters, initial memory search lists, and rebuild
additional sections of the CBOOT ROMs.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OEM Installation manual for more information.
98 OS-9 for 68K Processors BLS Reference

Chapter 5: Configuring Your System

for Networking

This chapter provides pointers to the appropriate OS-9 documentation
for configuring your OS-9 system for networking:

• Using LAN Communications Pak (Chapter 2 and Appendix A).

Chapter 2: LAN Communications Pak Overview provides an
overview of the network modules.

Appendix A: Configuring LAN Communications Pak describes
the network configuration that may need to occur as well as a
walk-through of the LAN Communications portion of the bootlist file.

• Using Network File System/Remote Procedure Call
(Appendix A).

Appendix A: Getting Started With Network File System/Remote
Procedure Call provides an overview, configuration description, and
bootlist walk-through of the NFS modules.

NoteNote
To view these documents, select View Documentation from the
Enhanced OS-9 for 68K CD.
99

5 Configuring Your System for Networking
100 OS-9 for 68K Processors BLS Reference

Chapter 6: Developing Your System in

Hawk

This chapter provides pointers to the appropriate OS-9 documentation
for using the Hawk Integrated Development Environment for your OS-9
project:

• Getting Started with Hawk (includes an example Hawk project).

• Using Hawk (includes a description of the Hawk interface and
instructions for debugging over a SLIP connection).

NoteNote
To view these documents, select View Documentation from the
Enhanced OS-9 for 68K CD.
101

6 Developing Your System in Hawk
102 OS-9 for 68K Processors BLS Reference

Appendix A: SCSI Information

This appendix includes the following topics:

• Overview

• SCSI Software Configurations — Implementation Notes
103

A SCSI Information
Overview

This appendix provides information regarding SCSI software and
hardware configurations. The first section contains details about:

• SCSI IDs

• The rbsccs and rbvccs device drivers

• The differences between rbsccs and rbvccs device descriptors
and other important device descriptor fields

• How to convert a rbsccs drive to a rbvccs drive

The second section deals with the configuration of SCSI peripherals. It
contains configuration information for:

• Embedded SCSI hard disk support

• Embedded SCSI floppy disk support

• Embedded SCSI tape support
104 OS-9 for 68K Processors BLS Reference

ASCSI Information
SCSI Software Configurations —
Implementation Notes

SCSI IDs

The default descriptors provided with the Board Support Packages map
devices to specific SCSI IDs. Take care to set the device IDs on each of
the devices. Failure to set the IDs correctly is the most common
problem in the initial setup. The following are valid SCSI IDs:

Table A-1 Valid SCSI IDs

SCSI ID Type Peripheral Device

7 Initiator None (host CPU) or SCSI host adaptor

6 Target TEAC FD235 HS or JS (FC-1 Controller)
embedded SCSI floppy drive.

LUN 0-3 are available but must be the same type
(HS or JS). LUN0 is the default drive for booting.

5 Target Default value for second tape drive.

4 Target Primary Tape Device (Archive 2150S, 2060S
Viper Cartridge tape, or TEAC MT-2ST Cassette
tape).

3 Target Reserved.

2 Target Reserved.
OS-9 for 68K Processors BLS Reference 105

A SCSI Information
NoteNote
The OS-9 for 68K SCSI implementation currently supports only single
initiator mode of operation. Placing additional initiators on the bus could
be fatal to the system

Device Drivers: rbsccs/rbvccs

The current version of OS-9 for 68K RBF supports logical sector sizes
other than 256 bytes. In the past, due to device constraints, if the
physical sector size of the device was other than 256 bytes, the device
driver (rbsccs) had to manage the logical to physical mapping of the
drive. The newer device driver (rbvccs) is now the only driver provided
with this version of OS-9 for 68K. This driver assumes the
logical/physical mapping of the drive is 1:1 at the sector size determined
from the SCSI drive during initialization. The implications of this,
especially the effects on the device descriptors, are explained below.

1 Target Default value for second CCS hard drive.

0 Target Primary Disk Device (usually CCS Winchester
drive).

Table A-1 Valid SCSI IDs (continued)

SCSI ID Type Peripheral Device
106 OS-9 for 68K Processors BLS Reference

ASCSI Information
NoteNote
For those systems still using RBSCCS formatted disks, the RBSCCS
driver currently in use on the 3.X systems can be used under Enhanced
OS-9 for 68K. Any drives being freshly formatted should use rbvccs.

NoteNote
rbsccs and rbvccs are not directly compatible. It is not sufficient to
just change the driver name to make the change. If the drive was
created under rbsccs with a physical sector size other than 256 bytes,
you must reformat the drive before using it with rbvccs.elow.

rbvccs drives allow only a single LOGICAL UNIT per DEVICE ID. The
device address should be:

Device Address + SCSI ID

The provided descriptor generators take this address into account. This
is important if you use the moded utility to change the SCSI IDs in a
descriptor. This method of providing unique addresses allows multiple
processes to access separate drives simultaneously, without locking. It
results in a significant performance increase for SCSI disconnect
capable systems.
OS-9 for 68K Processors BLS Reference 107

A SCSI Information
Differences Between rbsccs and rbvccs Device
Descriptors

While rbsccs is not in the Enhanced OS-9 for 68K package, the
differences between rbsccs and rbvccs device descriptors are
summarized here.

rbsccs: Logical sector size is always 256.
Sector size field = 0: Assume physical sector size is 256.
Sector size field = n: Assume physical sector size is n.

rbvccs: Sets logical and physical sector size to same value.
Sector size field = 0: Use current device sector size.
Sector size field = n: Set sector size to n, must be a format
enabled descriptor (h0fmt).

The rbvccs descriptors have the sector size set at 0, indicating the
drive should be queried to determine the sector size and the driver uses
the current sector size of the drive.

Other Important Device Descriptor Fields

Other important device descriptor fields are summarized here.

Drive Number: Use this field to assign a unique
LOGICAL DRIVE NUMBER for each
disk device the driver controls. If the
driver supports multiple LOGICAL
UNITS (for example, rbteac and
rbsccs), this number should be unique
for each unit on the controller. Set this
field to 0 for drivers supporting a single
LOGICAL UNIT per drive (for example,
rbvccs). The number selects which
drive table entry the driver uses for the
drive.

Controller ID: Indicates the actual hardware address of
the SCSI device on the bus. moded
refers to this field as SCSI controller ID.
108 OS-9 for 68K Processors BLS Reference

ASCSI Information
Logical Unit: Indicates the actual LUN of the device
on the controller device. It has nothing to
do with the drive number field. This field
is set to 0 for most embedded controller
drives.

SCSI Options: Controls the options used on the SCSI
bus. Set the appropriate bit(s) to turn on
the options as follows:

Bit 0 Disconnect allowed.

Bit 1 Enable target mode (not currently
supported).

Bit 2 Synchronous transfers.

Bit 3 Enable SCSI parity (not normally used).

Bits 4 - 31 Reserved for future use by
Microware.

NoteNote
Use the SCSI options bits 0 and 2 with care. In general, only enable the
synchronous field for drives explicitly stated as synchronous capable.
The same is true for the disconnect bit. Some devices do not support
disconnect. Consult the device manuals prior to enabling these options.
(Default descriptors have these options disabled.)
OS-9 for 68K Processors BLS Reference 109

A SCSI Information
Converting a rbsccs Drive for Use with rbvccs

If the drive was formatted under rbsccs with a sector size of 256,
rbvccs and its associated descriptor should work; no conversion is
needed.

If the drive was formatted under rbsccs with a sector size other than
256, use the following steps to convert the drive:

Step 1. Back up the drive. Because you are going to format the drive, all
information on it is lost. You can use any method using standard utilities
for this operation (for example, fsave). You can use a second
Winchester for this purpose; rbvccs and rbsccs can be used
simultaneously in the system.

Step 2. Create a descriptor for the device being converted. You can either
modify systype.d and use the descriptor generator or copy the
supplied descriptor and make the necessary changes. Remember the
h0 and h0fmt descriptors must agree.

Step 3. Load rbvccs, the new descriptor, and any required programs into
memory.

Step 4. Format the drive you are converting, using the new descriptor and
driver.

Step 5. Restore the drive’s contents (for example, frestore).

Step 6. Install a new boot file containing the rbvccs driver and the new
h0.vccs descriptor.
110 OS-9 for 68K Processors BLS Reference

ASCSI Information
NoteNote
Under the current release of OS-9 for 68K, when sector sizes are
changed on some devices, the correct capacity in sectors is not
available until after the drive has been physically formatted. When
format reports the number of sectors, make a quick check of them. If
you find an overly large disparity in the capacity, format the drive a
second time at the same sector size. This sets up the drive with the
correct capacity. Also, remember many drives are specified with
unformatted capacity. The formatted capacity is always somewhat less
than the unformatted capacity. It is common for a drive formatted at 256
bytes/sector to have less formatted capacity than the same drive
formatted at 512 bytes/sector. The formatted capacity of a given drive
depends on many factors; consult the individual drive manuals if
questions arise.

Embedded SCSI Hard Disk Support

Software Driver: rbvccs

Controller/Driver: In general, any SCSI embedded drive supporting
CCS Rev 4B. Examples include:

Imprimis Wren III, IV, V, VI, and VII
Imprimis Swift Series
Seagate 225N, 138N, 157N
Syquest SQ555 (44 megabyte removable)

SCSI ID: 0

Drive LUN: 0 (fixed)

Host Parity: Disabled
OS-9 for 68K Processors BLS Reference 111

A SCSI Information
NoteNote
rbsccs was the deblocking version of the driver. It supported a logical
sector size of 256 bytes and variable physical sector sizes (as defined
in the device descriptor’s sector size field). This driver was mainly
provided for existing installations that have initialized the media under
the pre-Version 2.4 OS-9 for 68K RBF.

rbvccs is the only supported driver for new installations. It supports
variable logical/physical sector sizes on a one-to-one basis. You should
use this driver with Version 2.4 OS-9 for 68K or greater RBF.

NoteNote
Removable media devices must have the removable hard disk flag
set in the device descriptor. If you use removable media and this flag is
not set, RBF and the driver may not detect when the media platter has
been changed. This may result in damage to the media’s file structure.

Embedded SCSI Floppy Disk Support

Software Driver: rbteac

Controller/Driver: TEAC FD-235 HS/JS

SCSI ID: 6

Drive LUN: 0 (optional drives may be connected as LUNs 1 - 3)

Host Parity: Disabled
112 OS-9 for 68K Processors BLS Reference

ASCSI Information
NoteNote
The HS version of the drive supports double density (1 Megabyte
unformatted capacity - DD) and high-density (2 Megabyte unformatted
capacity - HD) media. The JS version of the drive supports DD and HD
formats, as well as extra density (4 Megabyte unformatted - ED) media.

Embedded SCSI Tape Support

Software Driver: sbviper, sbteac, sbgiga

Controller/Driver: Archive QIC tape drives (sbviper)
TEAC MT-2ST/N50 and N60 tape cassette
(sbteac)
Exabyte 8200 and 8mm tape cassettes
(sbgiga)

SCSI ID: 4

Drive LUN: 0 (fixed)

Host Parity: Disabled

Module Locations

Drivers are found in MWOS/OS9/68000/CMDS/BOOTOBJS.

Descriptors are found in MWOS/OS9/68020/PORTS/<cpu>/
CMDS/BOOTOBJS/<subdirectory>.
OS-9 for 68K Processors BLS Reference 113

A SCSI Information
Table A-2 Module Locations

Drive Type Driver Name
Subdirectory for
Descriptors

Hard disk drive rbvccs vccs

Hard disk rbsccs sccs

Embedded floppy drive rbteac teacfci

Cartridge/DAT tape drive rbviper viper

Cassette tape drive sbteac teacfci

8mm tape drive sggiga exabyte
114 OS-9 for 68K Processors BLS Reference

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

Numerics
68000 51

directory 12
68020 12, 51

directory 12
68030 12
68040

cmds 12
68060

cmds 12, 13
directory 12

68332 12
68340 12
68349

directory 12
8mm tape driver name 114

A
add

SBF to boot 65
AM7990

ethernet chip 89
atomic kernel 58, 60
automatic boot 89

B
Board Support Package (BSP) 7
boot

automatic 89
diskless system 67
test 29
OS-9 for 68K Processors BLS Reference 115

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
BOOTFILES 74
bootlist file 56
BOOTLISTS 14, 51
BOOTOBJS 56
BOOTP 67
BootP 74
Bootstrap file

Build and link 78
bootstrap ROM 79
BSP

customization 10
installation kit contents 9
installing 16

buddy allocator 57
bus snooping(Snoopxxx) 60

C
cartridge/dat tape driver name 114
cassette tape driver name 114
change

SCSI ID in descriptor 107
cio 67
clock module 61
CMDS 51, 56, 71
cmds

68020, 68030, 68040 12
68060 12, 13

colored memory allocator 57
configure

CPU board 20
convert

rbsccs for use with rbvccs 110
CPU

board
caching 60
configuration sample 23
configure 20

CPU32 51
CRC

validate 56
116 OS-9 for 68K Processors BLS Reference

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
create
bootable tape 84
boots 14
OS-9 bootfiles 74

csl 67
customize

Disk-Based version of a BSP 50
ROM boot 90

D
d0_bootfile.make 74
daemons

for remote connections to system 71
date and time 61
default relocation register 95
DEFS

directory 14
defsfile 52
descriptors 63
development

kernel 58
device

descriptor fields 108
ID 105

DOS
cross development 11
directory 11

download
booting 94

drivers 63

E
edit

bootlist file 56
Embedded

floppy driver name 114
SCSI floppy drive 105
SCSI foppy disk support 112
OS-9 for 68K Processors BLS Reference 117

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
example
boot modules 51
list of makefiles with extended BSP 53
os9gen 80
reconfiguration session 23
tapegen 85
tapestart 87

Extended
bootlist file 56

extension modules 15

F
Files

Build and link bootstrap file 78
flash memory

RomBug installation 20
floppy

(d0) 59
boot 77

format 111
ftp 71

H
h0_bootfile.make 74
hard disk

(h0) 59
boot 76
driver name 114

hardware-specific code 13

I
I82596 ethernet controller 89
init 66

modules 59
InitExt 92
initext.a 92
initialize
118 OS-9 for 68K Processors BLS Reference

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
RAM disk 82
install

kit
contents 9

steps for V3.0 16
interrupt generator 61
IO directory 14
IOMAN 58

K
kernel

bootlist 57

L
load boot code 94
loadisp shell script 68

M
MACROS

directory 15
make

boots 74
new boot 56

makefile 53, 74
templates 11

MAKETEMPL
directory 11

math 67
math881 67
mdir 32
memory allocator 57
mfree 32
moded 107
modify

init module 59
Motorola

MC68xxx 12
OS-9 for 68K Processors BLS Reference 119

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
MVME147 50, 89
supported target 8

MVME162
supported target 8

MVME167
supported target 8

MVME177
supported target 8

MVME320 63
MVME327 63
MWOS

directory structure 10

O
object code 11
OS-9

create bootfiles 74
object code 11
server 74

OS9 directory 11
OS-9000

directories 11
OS9000 directory 11
OS9Boot 56, 78
os9gen 56, 74, 76

utility 78

P
P2

modules 60
P2 module

initialization list 60
parallel

port 62
periodic interrupt generator 61
pipe

module 61
Pipeman 61
120 OS-9 for 68K Processors BLS Reference

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
PORTS 13
directory 10

primary
disk device 106
tape device 105

procs 32

R
RAM

disk 63
disk image 82
initialize 82

Random Block File manager (RBF) 63
RBF 63

boot disk 74
rbsccs 108, 110, 114

logical sector size 108
sector size field 108

rbteac 114
rbvccs 106, 108, 110, 111, 114

logical sector size 108
sector size field 108

rbviper 114
rebuild

boot ROM components 15
RELS 52
removable hard disk flag 112
ROM

bootstrap 79
customize boot 90
directory 15
images 55

RomBug
PROM 9

rtclock 61

S
SBF
OS-9 for 68K Processors BLS Reference 121

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
boot tape 74
sbteac 114
SCF 61
SCSI

configuration 104
device

actual hardware address 108
embedded floppy drive 105
hard disk support

embedded 111
IDs 105
load host adapter driver 63
peripherals 104

sector size 106, 111
serial

ports 61
Serial Character File manager (SCF) 61
set

device ID 105
sggiga 114
shell 66
space protection (SSM) 60
SRC

directory 11, 13
S-record 96
start

system from tape 86
SYS 68

directory 15
sysgo 66
SYSMODS

directory 15
system

intialization 92
time-slicing 61

systype.d 52, 59

T
tape

boot 82
122 OS-9 for 68K Processors BLS Reference

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
manager 65
primary device SCSI ID 105

tapeboot 82
tapegen 74, 82, 84
tapestart 82, 86
target

supported 8
TEACa

FD235 105
telnet 71
Test Boot 29
ticker 61
tkxxx module 61

U
Ultra C

libraries 67
UNIX

BootP server 74
utilities

for use with board 51
os9gen 76
tapegen 84
tapestart 86

V
view

contents of init module 59
viper_tape_bootfile.make 74
VME

bus peripheral boards 56
serial board 62
OS-9 for 68K Processors BLS Reference 123

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
124 OS-9 for 68K Processors BLS Reference

125

Product Discrepancy Report

To: Microware Customer Support

FAX: 515-224-1352

From:___

Company:_______________________________________

Phone:__

Fax:_____________________Email:__________________

Product Name:

Description of Problem:
__

__

__

__

__

__

__

__

__

__

Host Platform______________________________________

Target Platform____________________________________

	HOME
	OS-9 for 68K Processors BLS Reference
	Table of Contents
	Chapter 1: Introduction
	OS-9 for 68K Targets Supported
	Software Packages

	BLS Installation Kit Contents
	MWOS Development Directory Structure
	MWOS Subdirectories

	General Installation Procedure

	Chapter 2: Hardware Configuration and the Initial Boot
	Target CPU Board Configuration
	Sample Reconfiguration Session for MVME boards
	Hardware Reconfiguration
	Board Memory Size
	Board ID
	Group ID
	VME Interrupt Levels
	VME Slave Memory
	VME Slave Memory Address
	SCSI Reset on ROMBUG startup

	Boot System Reconfiguration

	Initial OS-9 Test Boot

	Chapter 3: Optional Hard Disk and Initial Networking Startup
	Connecting A SCSI Hard Disk
	Manual Installation Information
	Formatting 4 Gigabyte or Smaller Drives
	Formatting and Partitioning Drives Larger than 4 Gigabytes

	Network Configuration
	Establishing the Hard Disk Root Directory
	Prepare Image on Host machine
	Transfer Image to Target Machine

	Chapter 4: Boot and ROM Customizing
	Overview
	PORTS Directory Organization
	BLS Makefiles
	Modifying Bootlists
	Init Module
	Customization Modules
	Clock Modules
	SCF and Pipeman
	RBF
	SBF
	Initial System Process
	Additional Modules and Utilities
	Networking Modules
	Networking Configuration Modules
	Networking Utilities
	NFS

	Making Boots
	I/O based Booters
	Hard Disk Boot
	Hard Disk Boot Method 1
	Hard Disk Boot Method 2

	Floppy Boot
	OS9Gen
	Manual Bootfile Installation Method 1
	Manual Bootfile Installation Method 2
	Manual Bootfile Installation Method 3

	Tape Booting
	Tape startup Sequence
	Supplied Utilities
	tapegen
	tapestart

	BootP Booting
	Creating the Boot
	Booting the boot

	Customizing ROM images
	Modifying the ROM Bootfile
	initext File

	Download Booting
	ROM Customization (OEM Package)

	Chapter 5: Configuring Your System for Networking
	Chapter 6: Developing Your System in Hawk
	Appendix A: SCSI Information
	Overview
	SCSI Software Configurations — Implementation Notes
	SCSI IDs
	Device Drivers: rbsccs/rbvccs
	Differences Between rbsccs and rbvccs Device Descriptors
	Other Important Device Descriptor Fields
	Converting a rbsccs Drive for Use with rbvccs
	Embedded SCSI Hard Disk Support
	Embedded SCSI Floppy Disk Support
	Embedded SCSI Tape Support
	Module Locations

	Index
	Product Discrepancy Report

